ﻻ يوجد ملخص باللغة العربية
In monolayer transition metal dichalcogenides, quantum emitters are associated with localized strain that can be deterministically applied to create designer nano-arrays of single photon sources. Despite an overwhelming empirical correlation with local strain, the nanoscale interplay between strain, excitons, defects and local crystalline structure that gives rise to these quantum emitters is poorly understood. Here, we combine room-temperature nano-optical imaging and spectroscopy of excitons in nanobubbles of localized strain in monolayer WSe2 with atomistic structural models to elucidate how strain induces nanoscale confinement potentials that give rise to highly localized exciton states in 2D semiconductors. Nano-optical imaging of nanobubbles in low-defect monolayers reveal localized excitons on length scales of approximately 10 nm at multiple sites along the periphery of individual nanobubbles, which is in stark contrast to predictions of continuum models of strain. These results agree with theoretical confinement potentials that are atomistically derived from measured topographies of existing nanobubbles. Our results provide one-of-a-kind experimental and theoretical insight of how strain-induced confinement - without crystalline defects - can efficiently localize excitons on length scales commensurate with exciton size, providing key nanoscale structure-property information for quantum emitter phenomena in monolayer WSe2.
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs
We report the nanoscale conductivity imaging of correlated electronic states in angle-aligned WSe2/WS2 heterostructures using microwave impedance microscopy. The noncontact microwave probe allows us to observe the Mott insulating state with one hole
We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures, where the gauge factor can reach as large as 2400. The observation of strain-dependent resistance and giant gauge factor is attributed to the
Engineering non-linear hybrid light-matter states in tailored optical lattices is a central research strategy for the simulation of complex Hamiltonians. Excitons in atomically thin crystals are an ideal active medium for such purposes, since they co
Valley degree of freedom in the 2D semiconductor is a promising platform for the next generation optoelectronics. Electrons in different valleys can have opposite Berry curvature, leading to the valley Hall effect (VHE). However, VHE without the plas