ﻻ يوجد ملخص باللغة العربية
We study the effects of electrostatic gating on the lateral distribution of charge carriers in two dimensional devices, in a non-linear dielectric environment. We compute the charge distribution using the Thomas-Fermi approximation to model the electrostatics of the system. The electric field lines generated by the gate are focused at the edges of the device, causing an increased depletion near the edges, compared to the center of the device. This effect strongly depends on the dimensions of the device, and the non-linear dielectric constant of the substrate. We experimentally demonstrate this effect using scanning superconducting interference device (SQUID) microscopy images of current distributions in gated LaAlO$_3$/SrTiO$_3$ heterostructures.
This article aims at providing a self-contained introduction to theoretical modeling of gate-induced carrier density in graphene sheets. For this, relevant theories are introduced, namely, classical capacitance model (CCM), self-consistent Poisson-Di
Electron-hole asymmetry is a fundamental property in solids that can determine the nature of quantum phase transitions and the regime of operation for devices. The observation of electron-hole asymmetry in graphene and recently in the phase diagram o
In semiconductor electronics, the field-effect refers to the control of electrical conductivity in nanoscale devices, which underpins the field-effect transistor, one of the cornerstones of present-day semiconductor technology. The effect is enabled
Monolayer epitaxial graphene (EG) grown on hexagonal Si-terminated SiC substrates is intrinsically electron-doped (carrier density is about 10^13 cm^(-2)). We demonstrate a clean device fabrication process using a precious-metal protective layer, and
Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at e