ﻻ يوجد ملخص باللغة العربية
In galactic disks, galactic rotation sets the bulk motion of gas, and its energy and momentum can be transferred toward small scales. Additionally, in the interstellar medium, random and noncircular motions arise from stellar feedback, cloud-cloud interactions, and instabilities, among other processes. Our aim is to comprehend to which extent small-scale gas dynamics is decoupled from galactic rotation. We study the relative contributions of galactic rotation and local noncircular motions to the circulation of gas, $Gamma$, a macroscopic measure of local rotation, defined as the line integral of the velocity field around a closed path. We measure the circulation distribution as a function of spatial scale in a set of simulated disk galaxies and we model the velocity field as the sum of galactic rotation and a Gaussian random field. The random field is parameterized by a broken power law in Fourier space, with a break at the scale $lambda_c$. We define the spatial scale $lambda_{rm eq}$ at which galactic rotation and non-circular motions contribute equally to $Gamma$. For our simulated galaxies, the gas dynamics at the scale of molecular clouds is usually dominated by noncircular motions, but in the center of galactic disks galactic rotation is still relevant. Our model shows that the transfer of rotation from large scales breaks at the scale $lambda_c$ and this transition is necessary to reproduce the circulation distribution. We find that $lambda_{rm eq}$, and therefore the structure of the gas velocity field, is set by the local conditions of gravitational stability and stellar feedback.
We study the conditions for disk galaxies to produce superbubbles that can break out of the disk and produce a galactic wind. We argue that the threshold surface density of supernovae rate for seeding a wind depends on the ability of superbubble ener
We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the
I consider the observed rotation curves of 12 gas-dominated low-surface-brightness galaxies -- objects in which the mass of gas ranges between 2.2 and 27 times the mass of the stellar disk (mean=9.4). This means that, in the usual decomposition of ro
Using three-dimensional non-equilibrium ionization (NEI) hydrodynamical simulation of the interstellar medium (ISM), we study the electron density, $n_{e}$, in the Galactic disk and compare it with the values derived from dispersion measures towards
Observations of interstellar dust are often used as a proxy for total gas column density $N_mathrm{H}$. By comparing $textit{Planck}$ thermal dust data (Release 1.2) and new dust reddening maps from Pan-STARRS 1 and 2MASS (Green et al. 2018), with ac