ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Distribution in the Galactic Disk - Results From a Non-Equilibrium Ionization Model of the ISM

213   0   0.0 ( 0 )
 نشر من قبل Miguel Avillez
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. A. de Avillez




اسأل ChatGPT حول البحث

Using three-dimensional non-equilibrium ionization (NEI) hydrodynamical simulation of the interstellar medium (ISM), we study the electron density, $n_{e}$, in the Galactic disk and compare it with the values derived from dispersion measures towards pulsars with known distances located up to 200 pc on either side of the Galactic midplane. The simulation results, consistent with observations, can be summarized as follows: (i) the DMs in the simulated disk lie between the maximum and minimum observed values, (ii) the log <n_e> derived from lines of sight crossing the simulated disk follows a Gaussian distribution centered at mu=-1.4 with a dispersion sigma=0.21, thus, the Galactic midplane <n_e>=0.04pm 0.01$ cm$^{-3}$, (iii) the highest electron concentration by mass (up to 80%) is in the thermally unstable regime (200<T<10^{3.9} K), (iv) the volume occupation fraction of the warm ionized medium is 4.9-6%, and (v) the electrons have a clumpy distribution along the lines of sight.



قيم البحث

اقرأ أيضاً

The ISM, powered by SNe, is turbulent and permeated by a magnetic field (with a mean and a turbulent component). It constitutes a frothy medium that is mostly out of equilibrium and is ram pressure dominated on most of the temperature ranges, except for T< 200 K and T> 1E6 K, where magnetic and thermal pressures dominate, respectively. Such lack of equilibrium is also imposed by the feedback of the radiative processes into the ISM flow. Many models of the ISM or isolated phenomena, such as bubbles, superbubbles, clouds evolution, etc., take for granted that the flow is in the so-called collisional ionization equilibrium (CIE). However, recombination time scales of most of the ions below 1E6 K are longer than the cooling time scale. This implies that the recombination lags behind and the plasma is overionized while it cools. As a consequence cooling deviates from CIE. This has severe implications on the evolution of the ISM flow and its ionization structure. Here, besides reviewing several models of the ISM, including bubbles and superbubbles, the validity of the CIE approximation is discussed, and a presentation of recent developments in modeling the ISM by taking into account the time-dependent ionization structure of the flow in a full-blown numerical 3D high resolution simulation is presented.
Aims. We present the first high-resolution non-equilibrium ionization simulation of the joint evolution of the Local Bubble (LB) and Loop I superbubbles in the turbulent supernova-driven interstellar medium (ISM). The time variation and spatial distr ibution of the Li-like ions Civ, Nv, and Ovi inside the LB are studied in detail. Methods. This work uses the parallel adaptive mesh refinement code EAF-PAMR coupled to the newly developed atomic and molecular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, using the latest revision of solar abundances. The finest AMR resolution is 1 pc within a grid that covers a representative patch of the Galactic disk (with an area of 1 kpc^2 in the midplane) and halo (extending up to 10 kpc above and below the midplane). Results. The evolution age of the LB is derived by the match between the simulated and observed absorption features of the Li-like ions Civ, Nv, and Ovi . The modeled LB current evolution time is bracketed between 0.5 and 0.8 Myr since the last supernova reheated the cavity in order to have N(Ovi) < 8 times 10^12 cm-2, log[N(Civ) /N(Ovi) ] < -0.9 and log[N(Nv) /N(Ovi) ] < -1 inside the simulated LB cavity, as found in Copernicus, IUE, GHRS-IST and FUSE observations.
We study a possible connection between processes of gamma-ray emission and hydrogen ionization in a few pc of central region around Sgr A*. Previous investigations showed there is a discrepancy between interpretation of gamma-ray and ionization data if gamma-rays are generated by proton-proton collisions. Here we provided analysis of processes of ionization and emission basing on analytical and numerical calculations of kinetic equations which describe processes of particle propagation and their energy losses. The origin of gamma rays could be either due to collisions of relativistic protons with the dense gas of the surrounding circumnuclear disk (CND) or bremsstrahlung and inverse Compton scattering of relativistic electrons. The hydrogen ionization in this case is produced by a low energy component of the CR spectrum. We found that if ionization is produced by protons the expected ionization rate of hydrogen in the CND is of the same order as derived from IR observations. So we do not see any discrepancy between the gamma-ray and ionization data for the hadronic model. In the case of ionization by electrons we obtained the ionization rate one order of magnitude higher than follows from the IR data. In principle, a selection between the leptonic and hadronic interpretations can be performed basing on measurements of radio and X-ray fluxes from this region because the leptonic and hadronic models give different values of the fluxes from there. We do not exclude that gamma-ray production and hydrogen ionization in the CND are due to a past activity of Sgr A* which occurred about 100 year ago. Then we hypothesize that there may be connection between a past proton eruption and a flux of hard X-rays emitted by Sgr A* hundred years ago as follows from the observed time variability of the iron line seen in the direction of GC molecular clouds.
240 - David A. Neufeld 2017
We have obtained estimates for the cosmic-ray ionization rate (CRIR) in the Galactic disk, using a detailed model for the physics and chemistry of diffuse interstellar gas clouds to interpret previously-published measurements of the abundance of four molecular ions: ArH$^+$, OH$^+$, H$_2$O$^+$ and H$_3^+$. For diffuse $atomic$ clouds at Galactocentric distances in the range $R_g sim 4 - 9$ kpc, observations of ArH$^+$, OH$^+$, and H$_2$O$^+$ imply a mean primary CRIR of $(2.2 pm 0.3) exp [(R_0-R_g)/4.7,rm{kpc}] times 10^{-16} rm , s^{-1}$ per hydrogen atom, where $R_0=8.5$ kpc. Within diffuse $molecular$ clouds observed toward stars in the solar neighborhood, measurements of H$_3^+$ and H$_2$ imply a primary CRIR of $(2.3 pm 0.6) times 10^{-16},,rm s^{-1}$ per H atom, corresponding to a total ionization rate per H$_2$ molecule of $(5.3 pm 1.1) times 10^{-16},,rm s^{-1},$ in good accord with previous estimates. These estimates are also in good agreement with a rederivation, presented here, of the CRIR implied by recent observations of carbon and hydrogen radio recombination lines along the sight-line to Cas A. Here, our best-fit estimate for the primary CRIR is $2.9 times 10^{-16},,rm s^{-1}$ per H atom. Our results show marginal evidence that the CRIR in diffuse molecular clouds decreases with cloud extinction, $A_{rm V}({rm tot})$, with a best-fit dependence $propto A_{rm V}({rm tot})^{-1}$ for $A_{rm V}({rm tot}) ge 0.5$.
In galactic disks, galactic rotation sets the bulk motion of gas, and its energy and momentum can be transferred toward small scales. Additionally, in the interstellar medium, random and noncircular motions arise from stellar feedback, cloud-cloud in teractions, and instabilities, among other processes. Our aim is to comprehend to which extent small-scale gas dynamics is decoupled from galactic rotation. We study the relative contributions of galactic rotation and local noncircular motions to the circulation of gas, $Gamma$, a macroscopic measure of local rotation, defined as the line integral of the velocity field around a closed path. We measure the circulation distribution as a function of spatial scale in a set of simulated disk galaxies and we model the velocity field as the sum of galactic rotation and a Gaussian random field. The random field is parameterized by a broken power law in Fourier space, with a break at the scale $lambda_c$. We define the spatial scale $lambda_{rm eq}$ at which galactic rotation and non-circular motions contribute equally to $Gamma$. For our simulated galaxies, the gas dynamics at the scale of molecular clouds is usually dominated by noncircular motions, but in the center of galactic disks galactic rotation is still relevant. Our model shows that the transfer of rotation from large scales breaks at the scale $lambda_c$ and this transition is necessary to reproduce the circulation distribution. We find that $lambda_{rm eq}$, and therefore the structure of the gas velocity field, is set by the local conditions of gravitational stability and stellar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا