ﻻ يوجد ملخص باللغة العربية
Coherent charge-photon and spin-photon coupling has recently been achieved in silicon double quantum dots (DQD). Here we demonstrate a versatile split-gate cavity-coupler that allows more than one DQD to be coupled to the same microwave cavity. Measurements of the cavity transmission as a function of level detuning yield a charge cavity coupling rate $g_c/2pi$ = 58 MHz, charge decoherence rate $gamma_c/2pi$ = 36 MHz, and cavity decay rate $kappa/2pi$ = 1.2 MHz. The charge cavity coupling rate is in good agreement with device simulations. Our coupling technique can be extended to enable simultaneous coupling of multiple DQDs to the same cavity mode, opening the door to long-range coupling of semiconductor qubits using microwave frequency photons.
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network the
Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot (DQD) char
Hybrid qubits have recently drawn intensive attention in quantum computing. We here propose a method to implement a universal controlled-phase gate of two hybrid qubits via two three-dimensional (3D) microwave cavities coupled to a superconducting fl
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole
With the introduction of superconducting circuits into the field of quantum optics, many novel experimental demonstrations of the quantum physics of an artificial atom coupled to a single-mode light field have been realized. Engineering such quantum