ﻻ يوجد ملخص باللغة العربية
Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot (DQD) charge qubit strongly coupled to a high-impedance SQUID array resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation and Hahn-echo measurements and find significantly reduced decoherence rates down to $gamma_2/2pisim 3,rm{MHz}$ corresponding to coherence times of up to $T_2 sim 50 , rm{ns}$ for charge states in gate defined quantum dot qubits.
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network the
Hybrid qubits have recently drawn intensive attention in quantum computing. We here propose a method to implement a universal controlled-phase gate of two hybrid qubits via two three-dimensional (3D) microwave cavities coupled to a superconducting fl
The parametric phase-locked oscillator (PPLO), also known as a parametron, is a resonant circuit in which one of the reactances is periodically modulated. It can detect, amplify, and store binary digital signals in the form of two distinct phases of
Coherent charge-photon and spin-photon coupling has recently been achieved in silicon double quantum dots (DQD). Here we demonstrate a versatile split-gate cavity-coupler that allows more than one DQD to be coupled to the same microwave cavity. Measu
Optimal control can be used to significantly improve multi-qubit gates in quantum information processing hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not only to dispersive gates of two qubit