ترغب بنشر مسار تعليمي؟ اضغط هنا

Extensions of Fiedler-Markhams inequality and Thompsons inequality

183   0   0.0 ( 0 )
 نشر من قبل Yongtao Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present some new inequalities related to determinant and trace for positive semidefinite block matrices by using symmetric tensor product, which are extensions of Fiedler-Markhams inequality and Thompsons inequality.



قيم البحث

اقرأ أيضاً

192 - Minghua Lin 2016
In comparing geodesics induced by different metrics, Audenaert formulated the following determinantal inequality $$det(A^2+|BA|)le det(A^2+AB),$$ where $A, B$ are $ntimes n$ positive semidefinite matrices. We complement his result by proving $$de t(A^2+|AB|)ge det(A^2+AB).$$ Our proofs feature the fruitful interplay between determinantal inequalities and majorization relations. Some related questions are mentioned.
We present a weak majorization inequality and apply it to prove eigenvalue and unitarily invariant norm extensions of a version of the Bohrs inequality due to Vasic and Kev{c}kic.
112 - Yuchi Wu 2020
In this paper, we prove a Prekopa-Leindler type inequality of the $L_p$ Brunn-Minkowski inequality. It extends an inequality proved by Das Gupta [8] and Klartag [16], and thus recovers the Prekopa-Leindler inequality. In addition, we prove a functional $L_p$ Minkowski inequality.
An easy consequence of Kantorovich-Rubinstein duality is the following: if $f:[0,1]^d rightarrow infty$ is Lipschitz and $left{x_1, dots, x_N right} subset [0,1]^d$, then $$ left| int_{[0,1]^d} f(x) dx - frac{1}{N} sum_{k=1}^{N}{f(x_k)} right| leq le ft| abla f right|_{L^{infty}} cdot W_1left( frac{1}{N} sum_{k=1}^{N}{delta_{x_k}} , dxright),$$ where $W_1$ denotes the $1-$Wasserstein (or Earth Movers) Distance. We prove another such inequality with a smaller norm on $ abla f$ and a larger Wasserstein distance. Our inequality is sharp when the points are very regular, i.e. $W_{infty} sim N^{-1/d}$. This prompts the question whether these two inequalities are specific instances of an entire underlying family of estimates capturing a duality between transport distance and function space.
Yuan and Leng (2007) gave a generalization of Ky Fans determinantal inequality, which is a celebrated refinement of the fundamental Brunn-Minkowski inequality $(det (A+B))^{1/n} ge (det A)^{1/n} +(det B)^{1/n}$, where $A$ and $B$ are positive semidef inite matrices. In this note, we first give an extension of Yuan-Lengs result to multiple positive definite matrices, and then we further extend the result to a larger class of matrices whose numerical ranges are contained in a sector. Our result improves a recent result of Liu [Linear Algebra Appl. 508 (2016) 206--213].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا