ﻻ يوجد ملخص باللغة العربية
The positivity and nonadditivity of the one-letter quantum capacity (maximum coherent information) $Q^{(1)}$ is studied for two simple examples of complementary quantum channel pairs $(B,C)$. They are produced by a process, we call it gluing, for combining two or more channels to form a composite. (We discuss various other forms of gluing, some of which may be of interest for applications outside those considered in this paper.) An amplitude-damping qubit channel with damping probability $0leq p leq 1$ glued to a perfect channel is an example of what we call a generalized erasure channel characterized by an erasure probability $lambda$ along with $p$. A second example, using a phase-damping rather than amplitude-damping qubit channel, results in the dephrasure channel of Ledtizky et al. [Phys. Rev. Lett. 121, 160501 (2018)]. In both cases we find the global maximum and minimum of the entropy bias or coherent information, which determine $Q^{(1)}(B_g)$ and $Q^{(1)}(C_g)$, respectively, and the ranges in the $(p,lambda)$ parameter space where these capacities are positive or zero, confirming previous results for the dephrasure channel. The nonadditivity of $Q^{(1)}(B_g)$ for two channels in parallel occurs in a well defined region of the $(p,lambda)$ plane for the amplitude-damping case, whereas for the dephrasure case we extend previous results to additional values of $p$ and $lambda$ at which nonadditivity occurs. For both cases, $Q^{(1)}(C_g)$ shows a peculiar behavior: When $p=0$, $C_g$ is an erasure channel with erasure probability $1-lambda$, so $Q^{(1)}(C_g)$ is zero for $lambda leq 1/2$. However, for any $p>0$, no matter how small, $Q^{(1)}(C_g)$ is positive, though it may be extremely small, for all $lambda >0$. Despite the simplicity of these models we still lack an intuitive understanding of the nonadditivity of $Q^{(1)}(B_g)$ and the positivity of $Q^{(1)}(C_g)$.
Transmission and storage of quantum information are the fundamental building blocks for large-scale quantum communication networks. Reliable certification of quantum communication channels and quantum memories requires the estimation of their capacit
The rates at which classical and quantum information can be simultaneously transmitted from two spatially separated senders to a single receiver over an arbitrary quantum channel are characterized. Two main results are proved in detail. The first des
We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and se
Using the deterministic, on-demand generation of two entangled phonons, we demonstrate a quantum eraser protocol in a phononic interferometer where the which-path information can be heralded during the interference process. Omitting the heralding ste
We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replaci