ترغب بنشر مسار تعليمي؟ اضغط هنا

On Safety Assessment of Artificial Intelligence

131   0   0.0 ( 0 )
 نشر من قبل Jens Braband
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we discuss how systems with Artificial Intelligence (AI) can undergo safety assessment. This is relevant, if AI is used in safety related applications. Taking a deeper look into AI models, we show, that many models of artificial intelligence, in particular machine learning, are statistical models. Safety assessment would then have t o concentrate on the model that is used in AI, besides the normal assessment procedure. Part of the budget of dangerous random failures for the relevant safety integrity level needs to be used for the probabilistic faulty behavior of the AI system. We demonstrate our thoughts with a simple example and propose a research challenge that may be decisive for the use of AI in safety related systems.

قيم البحث

اقرأ أيضاً

This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
249 - Han Yu , Zhiqi Shen , Chunyan Miao 2018
As artificial intelligence (AI) systems become increasingly ubiquitous, the topic of AI governance for ethical decision-making by AI has captured public imagination. Within the AI research community, this topic remains less familiar to many researche rs. In this paper, we complement existing surveys, which largely focused on the psychological, social and legal discussions of the topic, with an analysis of recent advances in technical solutions for AI governance. By reviewing publications in leading AI conferences including AAAI, AAMAS, ECAI and IJCAI, we propose a taxonomy which divides the field into four areas: 1) exploring ethical dilemmas; 2) individual ethical decision frameworks; 3) collective ethical decision frameworks; and 4) ethics in human-AI interactions. We highlight the intuitions and key techniques used in each approach, and discuss promising future research directions towards successful integration of ethical AI systems into human societies.
The ability to use symbols is the pinnacle of human intelligence, but has yet to be fully replicated in machines. Here we argue that the path towards symbolically fluent artificial intelligence (AI) begins with a reinterpretation of what symbols are, how they come to exist, and how a system behaves when it uses them. We begin by offering an interpretation of symbols as entities whose meaning is established by convention. But crucially, something is a symbol only for those who demonstrably and actively participate in this convention. We then outline how this interpretation thematically unifies the behavioural traits humans exhibit when they use symbols. This motivates our proposal that the field place a greater emphasis on symbolic behaviour rather than particular computational mechanisms inspired by more restrictive interpretations of symbols. Finally, we suggest that AI research explore social and cultural engagement as a tool to develop the cognitive machinery necessary for symbolic behaviour to emerge. This approach will allow for AI to interpret something as symbolic on its own rather than simply manipulate things that are only symbols to human onlookers, and thus will ultimately lead to AI with more human-like symbolic fluency.
The Light-Up puzzle, also known as the AKARI puzzle, has never been solved using modern artificial intelligence (AI) methods. Currently, the most widely used computational technique to autonomously develop solutions involve evolution theory algorithm s. This project is an effort to apply new AI techniques for solving the Light-up puzzle faster and more computationally efficient. The algorithms explored for producing optimal solutions include hill climbing, simulated annealing, feed-forward neural network (FNN), and convolutional neural network (CNN). Two algorithms were developed for hill climbing and simulated annealing using 2 actions (add and remove light bulb) versus 3 actions(add, remove, or move light-bulb to a different cell). Both hill climbing and simulated annealing algorithms showed a higher accuracy for the case of 3 actions. The simulated annealing showed to significantly outperform hill climbing, FNN, CNN, and an evolutionary theory algorithm achieving 100% accuracy in 30 unique board configurations. Lastly, while FNN and CNN algorithms showed low accuracies, computational times were significantly faster compared to the remaining algorithms. The GitHub repository for this project can be found at https://github.com/rperera12/AKARI-LightUp-GameSolver-with-DeepNeuralNetworks-and-HillClimb-or-SimulatedAnnealing.
540 - Amir Husain 2017
This paper covers a number of approaches that leverage Artificial Intelligence algorithms and techniques to aid Unmanned Combat Aerial Vehicle (UCAV) autonomy. An analysis of current approaches to autonomous control is provided followed by an explora tion of how these techniques can be extended and enriched with AI techniques including Artificial Neural Networks (ANN), Ensembling and Reinforcement Learning (RL) to evolve control strategies for UCAVs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا