ﻻ يوجد ملخص باللغة العربية
Large volume Liquid Argon Time Projection Chambers (LAr-TPC) are used and proposed for neutrino physics and rare event search. Most of these detectors make use of the scintillation light of liquid argon for trigger purposes. Two different approaches can be adopted to provide these detectors with an effective trigger system, relying upon analog or digital processing of signal coming from photodetectors, like photomultiplier tubes or silicon photomultipliers. Each method presents advantages and drawbacks, so the implementation of a hybrid solution can benefit from both approaches. To this purpose, an innovative electronic board prototype has been designed and proposed for the use in large volume LAr-TPC detectors.
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and oers se
Using truth-level Monte Carlo simulations of particle interactions in a large volume of liquid argon, we demonstrate physics capabilities enabled by reconstruction of topologically compact and isolated low-energy features, or `blips, in large liquid
A number of liquid argon time projection chambers (LAr TPCs) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can aff
Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow LArTPCs to operate in the high-multiplicity near detector environment of DUNE, a new charge readout
The Liquid Argon Time Projection Chamber (LArTPC) is an advanced neutrino detector technology widely used in recent and upcoming accelerator neutrino experiments. It features a low energy threshold and high spatial resolution that allow for comprehen