ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning Enabled Optimization of Downlink Beamforming Under Per-Antenna Power Constraints: Algorithms and Experimental Demonstration

238   0   0.0 ( 0 )
 نشر من قبل Gan Zheng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies fast downlink beamforming algorithms using deep learning in multiuser multiple-input-single-output systems where each transmit antenna at the base station has its own power constraint. We focus on the signal-to-interference-plus-noise ratio (SINR) balancing problem which is quasi-convex but there is no efficient solution available. We first design a fast subgradient algorithm that can achieve near-optimal solution with reduced complexity. We then propose a deep neural network structure to learn the optimal beamforming based on convolutional networks and exploitation of the duality of the original problem. Two strategies of learning various dual variables are investigated with different accuracies, and the corresponding recovery of the original solution is facilitated by the subgradient algorithm. We also develop a generalization method of the proposed algorithms so that they can adapt to the varying number of users and antennas without re-training. We carry out intensive numerical simulations and testbed experiments to evaluate the performance of the proposed algorithms. Results show that the proposed algorithms achieve close to optimal solution in simulations with perfect channel information and outperform the alleged theoretically optimal solution in experiments, illustrating a better performance-complexity tradeoff than existing schemes.

قيم البحث

اقرأ أيضاً

Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-single-output (MISO) systems. Traditionally, finding the optimal beamforming solution relies on iterative algorithms, which introduces high c omputational delay and is thus not suitable for real-time implementation. In this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the uplink-downlink duality and the known structure of optimal solutions. Using this framework, we construct three beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signal-to-interference-plus-noise ratio (SINR) balancing problem, the power minimization problem, and the sum rate maximization problem. For the former two problems the BNNs adopt the supervised learning approach, while for the sum rate maximization problem a hybrid method of supervised and unsupervised learning is employed. Simulation results show that the BNNs can achieve near-optimal solutions to the SINR balancing and power minimization problems, and a performance close to that of the weighted minimum mean squared error algorithm for the sum rate maximization problem, while in all cases enjoy significantly reduced computational complexity. In summary, this work paves the way for fast realization of optimal beamforming in multiuser MISO systems.
Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, wh en only the uplink channel information is available. Our main contribution is to propose a model-driven learning technique that exploits the structure of the optimal downlink beamforming to design an effective hybrid learning strategy with the aim to maximize the sum rate performance. This is achieved by jointly considering the learning performance of the downlink channel, the power and the sum rate in the training stage. The proposed approach applies to generic cases in which the uplink channel information is available, but its relation to the downlink channel is unknown and does not require an explicit downlink channel estimation. We further extend the developed technique to massive multiple-input multiple-output scenarios and achieve a distributed learning strategy for multicell systems without an inter-cell signalling overhead. Simulation results verify that our proposed method provides the performance close to the state of the art numerical algorithms with perfect downlink channel information and significantly outperforms existing data-driven methods in terms of the sum rate.
Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tac kle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAVs trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.
192 - Chen He , Xie Xie , Kun Yang 2021
This paper considers an intelligent reflecting surface (IRS) assisted multi-input multi-output (MIMO) power splitting (PS) based simultaneous wireless information and power transfer (SWIPT) system with multiple PS receivers (PSRs). The objective is t o maximize the achievable data rate of the system by jointly optimizing the PS ratios at the PSRs, the active transmit beamforming (ATB) at the access point (AP), and the passive reflective beamforming (PRB) at the IRS, while the constraints on maximum transmission power at the AP, the reflective phase shift of each element at the IRS, the individual minimum harvested energy requirement of each PSR, and the domain of PS ratio of each PSR are all satisfied. For this unsolved problem, however, since the optimization variables are intricately coupled and the constraints are conflicting, the formulated problem is non-convex, and cannot be addressed by employing exist approaches directly. To this end, we propose a joint optimization framework to solve this problem. Particularly, we reformulate it as an equivalent form by employing the Lagrangian dual transform and the fractional programming transform, and decompose the transformed problem into several sub-problems. Then, we propose an alternate optimization algorithm by capitalizing on the dual sub-gradient method, the successive convex approximation method, and the penalty-based majorization-minimization approach, to solve the sub-problems iteratively, and obtain the optimal solutions in nearly closed-forms. Numerical simulation results verify the effectiveness of the IRS in SWIPT system and indicate that the proposed algorithm offers a substantial performance gain.
316 - Ming-Min Zhao , An Liu , Yubo Wan 2020
Intelligent reflecting surface (IRS) is an emerging technology that is able to reconfigure the wireless channel via tunable passive signal reflection and thereby enhance the spectral and energy efficiency of wireless networks cost-effectively. In thi s paper, we study an IRS-aided multiuser multiple-input single-output (MISO) wireless system and adopt the two-timescale (TTS) transmission to reduce the signal processing complexity and channel training overhead as compared to the existing schemes based on the instantaneous channel state information (I-CSI), and at the same time, exploit the multiuser channel diversity in transmission scheduling. Specifically, the long-term passive beamforming is designed based on the statistical CSI (S-CSI) of all links, while the short-term active beamforming is designed to cater to the I-CSI of all users reconfigured channels with optimized IRS phase shifts. We aim to minimize the average transmit power at the access point (AP), subject to the users individual quality of service (QoS) constraints. The formulated stochastic optimization problem is non-convex and difficult to solve since the long-term and short-term design variables are complicatedly coupled in the QoS constraints. To tackle this problem, we propose an efficient algorithm, called the primal-dual decomposition based TTS joint active and passive beamforming (PDD-TJAPB), where the original problem is decomposed into a long-term problem and a family of short-term problems, and the deep unfolding technique is employed to extract gradient information from the short-term problems to construct a convex surrogate problem for the long-term problem. The proposed algorithm is proved to converge to a stationary solution of the original problem almost surely. Simulation results are presented which demonstrate the advantages and effectiveness of the proposed algorithm as compared to benchmark schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا