ترغب بنشر مسار تعليمي؟ اضغط هنا

Full Duplex Hybrid A/D Beamforming with Reduced Complexity Multi-Tap Analog Cancellation

201   0   0.0 ( 0 )
 نشر من قبل Md Atiqul Islam
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the hardware complexity of the analog self-interference canceller in full duplex Multiple Input Multiple Output (MIMO) designs does not necessarily scale with the number of transceiver antennas, exploiting the benefits of analog cancellation in massive MIMO systems with hundreds of antenna elements is still quite impractical. Hybrid Analog and Digital (A/D) beamforming architectures have been lately considered as a candidate technology for realizing massive MIMO transceivers with very large number of antenna elements, but with much fewer numbers of Radio Frequency (RF) chains. In this paper, we present a novel architecture for full duplex hybrid A/D beamforming transceivers including multi-tap analog cancellation with reduced number of taps and simple multiplexers for efficient signal routing among the transceiver RF chains. Capitalizing on the proposed transceiver architecture, we present a joint design of analog cancellation and A/D beamforming with the objective to maximize the achievable full duplex rate performance. Representative millimeter wave simulation results demonstrate the effectiveness of the proposed architecture and algorithmic framework for enabling simultaneous uplink and downlink communications with reduced complexity analog self-interference cancellation.



قيم البحث

اقرأ أيضاً

In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receiv e beamforming with reduced complexity multi-tap analog Self-Interference (SI) cancellation, we propose a novel transmission scheme exploiting channel reciprocity for joint downlink beamformed information data communication and uplink channel estimation through training data transmission. We adopt a general model for pilot-assisted channel estimation and present a unified optimization framework for all involved FD MIMO design parameters. Our representative Monte Carlo simulation results for an example algorithmic solution for the beamformers as well as for the analog and digital SI cancellation demonstrate that the proposed FD-based joint communication and control scheme provides 1.4x the downlink rate of its half duplex counterpart. This performance improvement is achieved with 50% reduction in the hardware complexity for the analog canceller than conventional FD MIMO architectures with fully connected analog cancellation.
82 - Hong Shen , Tian Ding , Wei Xu 2020
We study the beamforming optimization for an intelligent reflecting surface (IRS)-aided full-duplex (FD) communication system in this letter. Specifically, we maximize the sum rate of bi-directional transmissions by jointly optimizing the transmit be amforming and the beamforming of the IRS reflection. A fast converging alternating algorithm is developed to tackle this problem. In each iteration of the proposed algorithm, the solutions to the transmit beamforming and the IRS reflect beamforming are obtained in a semi-closed form and a closed form, respectively. Compared to an existing method based on the Arimoto-Blahut algorithm, the proposed method achieves almost the same performance while enjoying much faster convergence and lower computational complexity.
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user sim ultaneously over the same time-frequency dimension with the help of IRS. Under this setup, we consider three deployment cases: 1) two distributed IRSs placed near the UL user and DL user, respectively; 2) one centralized IRS placed near the DL user; 3) one centralized IRS placed near the UL user. In each case, we aim to minimize the weighted sum transmit power consumption of the AP and UL user by jointly optimizing their transmit power and the passive reflection coefficients at the IRS (or IRSs), subject to the UL and DL users rate constraints and the uni-modulus constraints on the IRS reflection coefficients. First, we analyze the minimum transmit power required in the IRS-aided FD system under each deployment scheme, and compare it with that of the corresponding half-duplex (HD) system. We show that the FD system outperforms its HD counterpart for all IRS deployment schemes, while the distributed deployment further outperforms the other two centralized deployment schemes. Next, we transform the challenging power minimization problem into an equivalent but more tractable form and propose an efficient algorithm to solve it based on the block coordinate descent (BCD) method. Finally, numerical results are presented to validate our analysis as well as the efficacy of the proposed passive beamforming design.
132 - Meng Hua , Qingqing Wu 2021
This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink (DL) and meanwhile receives information signals in the uplink (UL) with the help of IRS. Particularly, we propose three types of IRS beamforming configurations to strike a balance between the system performance and signaling overhead as well as implementation complexity. We first propose the fully dynamic IRS beamforming, where the IRS phase-shift vectors vary with each time slot for both DL wireless energy transfer (WET) and UL wireless information transmission (WIT). To further reduce signaling overhead and implementation complexity, we then study two special cases, namely, partially dynamic IRS beamforming and static IRS beamforming. For the former case, two different phase-shift vectors can be exploited for the DL WET and the UL WIT, respectively, whereas for the latter case, the same phase-shift vector needs to be applied for both DL and UL transmissions. We aim to maximize the system throughput by jointly optimizing the time allocation, HAP transmit power, and IRS phase shifts for the above three cases. Two efficient algorithms based on alternating optimization and penalty-based algorithms are respectively proposed for both perfect self-interference cancellation (SIC) case and imperfect SIC case by applying successive convex approximation and difference-of-convex optimization techniques. Simulation results demonstrate the benefits of IRS for enhancing the performance of FD-WPCN, and also show that the IRS-aided FD-WPCN is able to achieve significantly performance gain compared to its counterpart with half-duplex when the self-interference (SI) is properly suppressed.
Security is a critical issue in full duplex (FD) communication systems due to the broadcast nature of wireless channels. In this paper, joint design of information and artificial noise beamforming vectors is proposed for the FD simultaneous wireless information and power transferring (FD-SWIPT) systems with loopback self-interference cancellation. To guarantee high security and energy harvesting performance of the FD-SWIPT system, the proposed design is formulated as a secrecy rate maximization problem under energy transfer rate constraints. Although the secrecy rate maximization problem is non-convex, we solve it via semidefinite relaxation and a two-dimensional search. We prove the optimality of our proposed algorithm and demonstrate its performance via simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا