ترغب بنشر مسار تعليمي؟ اضغط هنا

Personalized Embedding-based e-Commerce Recommendations at eBay

266   0   0.0 ( 0 )
 نشر من قبل Tian Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommender systems are an essential component of e-commerce marketplaces, helping consumers navigate massive amounts of inventory and find what they need or love. In this paper, we present an approach for generating personalized item recommendations in an e-commerce marketplace by learning to embed items and users in the same vector space. In order to alleviate the considerable cold-start problem present in large marketplaces, item and user embeddings are computed using content features and multi-modal onsite user activity respectively. Data ablation is incorporated into the offline model training process to improve the robustness of the production system. In offline evaluation using a dataset collected from eBay traffic, our approach was able to improve the Recall@k metric over the Recently-Viewed-Item (RVI) method. This approach to generating personalized recommendations has been launched to serve production traffic, and the corresponding scalable engineering architecture is also presented. Initial A/B test results show that compared to the current personalized recommendation module in production, the proposed method increases the surface rate by $sim$6% to generate recommendations for 90% of listing page impressions.



قيم البحث

اقرأ أيضاً

242 - Chieh Lo , Hongliang Yu , Xin Yin 2021
The item details page (IDP) is a web page on an e-commerce website that provides information on a specific product or item listing. Just below the details of the item on this page, the buyer can usually find recommendations for other relevant items. These are typically in the form of a series of modules or carousels, with each module containing a set of recommended items. The selection and ordering of these item recommendation modules are intended to increase discover-ability of relevant items and encourage greater user engagement, while simultaneously showcasing diversity of inventory and satisfying other business objectives. Item recommendation modules on the IDP are often curated and statically configured for all customers, ignoring opportunities for personalization. In this paper, we present a scalable end-to-end production system to optimize the personalized selection and ordering of item recommendation modules on the IDP in real-time by utilizing deep neural networks. Through extensive offline experimentation and online A/B testing, we show that our proposed system achieves significantly higher click-through and conversion rates compared to other existing methods. In our online A/B test, our framework improved click-through rate by 2.48% and purchase-through rate by 7.34% over a static configuration.
Result relevance prediction is an essential task of e-commerce search engines to boost the utility of search engines and ensure smooth user experience. The last few years eyewitnessed a flurry of research on the use of Transformer-style models and de ep text-match models to improve relevance. However, these two types of models ignored the inherent bipartite network structures that are ubiquitous in e-commerce search logs, making these models ineffective. We propose in this paper a novel Second-order Relevance, which is fundamentally different from the previous First-order Relevance, to improve result relevance prediction. We design, for the first time, an end-to-end First-and-Second-order Relevance prediction model for e-commerce item relevance. The model is augmented by the neighborhood structures of bipartite networks that are built using the information of user behavioral feedback, including clicks and purchases. To ensure that edges accurately encode relevance information, we introduce external knowledge generated from BERT to refine the network of user behaviors. This allows the new model to integrate information from neighboring items and queries, which are highly relevant to the focus query-item pair under consideration. Results of offline experiments showed that the new model significantly improved the prediction accuracy in terms of human relevance judgment. An ablation study showed that the First-and-Second-order model gained a 4.3% average gain over the First-order model. Results of an online A/B test revealed that the new model derived more commercial benefits compared to the base model.
With growing consumer adoption of online grocery shopping through platforms such as Amazon Fresh, Instacart, and Walmart Grocery, there is a pressing business need to provide relevant recommendations throughout the customer journey. In this paper, we introduce a production within-basket grocery recommendation system, RTT2Vec, which generates real-time personalized product recommendations to supplement the users current grocery basket. We conduct extensive offline evaluation of our system and demonstrate a 9.4% uplift in prediction metrics over baseline state-of-the-art within-basket recommendation models. We also propose an approximate inference technique 11.6x times faster than exact inference approaches. In production, our system has resulted in an increase in average basket size, improved product discovery, and enabled faster user check-out
136 - Su Yan , Wei Lin , Tianshu Wu 2017
On most sponsored search platforms, advertisers bid on some keywords for their advertisements (ads). Given a search request, ad retrieval module rewrites the query into bidding keywords, and uses these keywords as keys to select Top N ads through inv erted indexes. In this way, an ad will not be retrieved even if queries are related when the advertiser does not bid on corresponding keywords. Moreover, most ad retrieval approaches regard rewriting and ad-selecting as two separated tasks, and focus on boosting relevance between search queries and ads. Recently, in e-commerce sponsored search more and more personalized information has been introduced, such as user profiles, long-time and real-time clicks. Personalized information makes ad retrieval able to employ more elements (e.g. real-time clicks) as search signals and retrieval keys, however it makes ad retrieval more difficult to measure ads retrieved through different signals. To address these problems, we propose a novel ad retrieval framework beyond keywords and relevance in e-commerce sponsored search. Firstly, we employ historical ad click data to initialize a hierarchical network representing signals, keys and ads, in which personalized information is introduced. Then we train a model on top of the hierarchical network by learning the weights of edges. Finally we select the best edges according to the model, boosting RPM/CTR. Experimental results on our e-commerce platform demonstrate that our ad retrieval framework achieves good performance.
Graph convolution networks (GCN), which recently becomes new state-of-the-art method for graph node classification, recommendation and other applications, has not been successfully applied to industrial-scale search engine yet. In this proposal, we i ntroduce our approach, namely SearchGCN, for embedding-based candidate retrieval in one of the largest e-commerce search engine in the world. Empirical studies demonstrate that SearchGCN learns better embedding representations than existing methods, especially for long tail queries and items. Thus, SearchGCN has been deployed into JD.coms search production since July 2020.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا