ترغب بنشر مسار تعليمي؟ اضغط هنا

Unique Scales Preserve Self-Similar Integrate-and-Fire Functionality of Neuronal Clusters

100   0   0.0 ( 0 )
 نشر من قبل Lilianne Mujica-Parodi
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying the brains neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks required for building intelligent computation. Experiments support many forms and sizes of neural clustering, while neural mass models (NMM) assume scale-invariant functionality. Here, we use computational simulations with brain-derived fMRI network to show that not only brain network stays structurally self-similar continuously across scales, but also neuron-like signal integration functionality is preserved at particular scales. As such, we propose a coarse-graining of network of neurons to ensemble-nodes, with multiple spikes making up its ensemble-spike, and time re-scaling factor defining its ensemble-time step. The fractal-like spatiotemporal structure and function that emerge permit strategic choice in bridging across experimental scales for computational modeling, while also suggesting regulatory constraints on developmental and/or evolutionary growth spurts in brain size, as per punctuated equilibrium theories in evolutionary biology.


قيم البحث

اقرأ أيضاً

Statistical properties of spike trains as well as other neurophysiological data suggest a number of mathematical models of neurons. These models range from entirely descriptive ones to those deduced from the properties of the real neurons. One of the m, the diffusion leaky integrate-and-fire neuronal model, which is based on the Ornstein-Uhlenbeck stochastic process that is restricted by an absorbing barrier, can describe a wide range of neuronal activity in terms of its parameters. These parameters are readily associated with known physiological mechanisms. The other model is descriptive, Gamma renewal process, and its parameters only reflect the observed experimental data or assumed theoretical properties. Both of these commonly used models are related here. We show under which conditions the Gamma model is an output from the diffusion Ornstein-Uhlenbeck model. In some cases we can see that the Gamma distribution is unrealistic to be achieved for the employed parameters of the Ornstein-Uhlenbeck process.
We derive analytical formulae for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description.
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-ba sed learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stablecprecise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.
Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at mesoscopic scales. Since VSDi signals report the average membrane potential, it seems natural to use a mean-field formalism to model such signals. H ere, we investigate a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. The AdEx model can capture the spiking response of different cell types, such as regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the mean-field model. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model accurately predicts the response time course of the population. One notable exception was that the tail of the response at long times was not well predicted, because the mean-field does not include adaptation mechanisms. We conclude that the Master Equation formalism can yield mean-field models that predict well the behavior of nonlinear networks with conductance-based interactions and various electrophysiolgical properties, and should be a good candidate to model VSDi signals where both excitatory and inhibitory neurons contribute.
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinit e number of neurons, the microscopic model of this network can be reduced to an exact low-dimensional system of mean-field equations. Bifurcation analysis of these equations reveals three different dynamic modes in a free network: a stable resting state, a stable limit cycle, and bistability with a coexisting resting state and a limit cycle. We show that in the limit cycle mode, high-frequency stimulation of an inhibitory population can stabilize an unstable resting state and effectively suppress collective oscillations. We also show that in the bistable mode, the dynamics of the network can be switched from a stable limit cycle to a stable resting state by applying an inhibitory pulse to the excitatory population. The results obtained from the mean-field equations are confirmed by numerical simulation of the microscopic model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا