ﻻ يوجد ملخص باللغة العربية
Identifying the brains neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks required for building intelligent computation. Experiments support many forms and sizes of neural clustering, while neural mass models (NMM) assume scale-invariant functionality. Here, we use computational simulations with brain-derived fMRI network to show that not only brain network stays structurally self-similar continuously across scales, but also neuron-like signal integration functionality is preserved at particular scales. As such, we propose a coarse-graining of network of neurons to ensemble-nodes, with multiple spikes making up its ensemble-spike, and time re-scaling factor defining its ensemble-time step. The fractal-like spatiotemporal structure and function that emerge permit strategic choice in bridging across experimental scales for computational modeling, while also suggesting regulatory constraints on developmental and/or evolutionary growth spurts in brain size, as per punctuated equilibrium theories in evolutionary biology.
Statistical properties of spike trains as well as other neurophysiological data suggest a number of mathematical models of neurons. These models range from entirely descriptive ones to those deduced from the properties of the real neurons. One of the
We derive analytical formulae for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description.
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-ba
Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at mesoscopic scales. Since VSDi signals report the average membrane potential, it seems natural to use a mean-field formalism to model such signals. H
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinit