ﻻ يوجد ملخص باللغة العربية
Statistical properties of spike trains as well as other neurophysiological data suggest a number of mathematical models of neurons. These models range from entirely descriptive ones to those deduced from the properties of the real neurons. One of them, the diffusion leaky integrate-and-fire neuronal model, which is based on the Ornstein-Uhlenbeck stochastic process that is restricted by an absorbing barrier, can describe a wide range of neuronal activity in terms of its parameters. These parameters are readily associated with known physiological mechanisms. The other model is descriptive, Gamma renewal process, and its parameters only reflect the observed experimental data or assumed theoretical properties. Both of these commonly used models are related here. We show under which conditions the Gamma model is an output from the diffusion Ornstein-Uhlenbeck model. In some cases we can see that the Gamma distribution is unrealistic to be achieved for the employed parameters of the Ornstein-Uhlenbeck process.
Identifying the brains neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks required for building intelligent computation. Experimen
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at differentctime scales. Using an STDP-ba
We study the dynamics of identical leaky integrate-and-fire neurons with symmetric non-local coupling. Upon varying control parameters (coupling strength, coupling range, refractory period) we investigate the systems behaviour and highlight the forma
We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a lea
Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at mesoscopic scales. Since VSDi signals report the average membrane potential, it seems natural to use a mean-field formalism to model such signals. H