ﻻ يوجد ملخص باللغة العربية
In this review article, we discuss the current status and future prospects of perturbation theory as a means of studying the equilibrium thermodynamic and near-equilibrium transport properties of deconfined QCD matter. We begin with a brief introduction to the general topic, after which we review in some detail the foundations and modern techniques of the real- and imaginary-time formalisms of thermal field theory, covering e.g. the different bases used in the real-time formalism and the resummations required to deal with soft and collinear contributions. After this, we discuss the current status of applications of these techniques, including topics such as electromagnetic rates, transport coefficients, jet quenching, heavy quarks and quarkonia, and the Equations of State of hot quark-gluon plasma as well as cold and dense quark matter. Finally, we conclude with our view of the future directions of the field, i.e. how we anticipate perturbative calculations to contribute to our collective understanding of strongly interacting matter in the coming years.
In this paper, we compute the constrained QCD effective potential up to two-loop order with finite quark mass and chemical potential. We present the explicit calculations by using the double line notation and analytical expressions for massless quark
Due to the angular condition in the light-front dynamics (LFD), the extraction of the electromagnetic form factors for spin-1 particles can be uniquely determined taking into account implicitly non-valence and/or the zero-mode contributions to the ma
The predictive power of perturbative QCD (pQCD) depends on two important issues: (1) how to eliminate the renormalization scheme-and-scale ambiguities at fixed order, and (2) how to reliably estimate the contributions of unknown higher-order terms us
Collider experiments often exploit information about the quantum numbers of final state hadrons to maximize their sensitivity, with applications ranging from the use of tracking information (electric charge) for precision jet substructure measurement
In order to study the detailed dynamics and associated non-perturbative features of QCD, a dual version of the color gauge theory based on the topologically viable homogeneous fiber bundle approach has been analysed taking into account its magnetic s