ﻻ يوجد ملخص باللغة العربية
In this letter, we consider exact $mu-tau$ reflection symmetries for quarks and leptons. Fermion mass matrices are assumed to be four-zero textures for charged fermions $f = u,d,e$ and a symmetric matrix for neutrinos $ u_{L}$. By a bi-maximal transformation, all the mass matrices lead to $mu-tau$ reflection symmetric forms, which seperately satisfy $T_{u} , m_{u, u}^{*} , T_{u} = m_{u, u}$ and $T_{d} , m_{d,e}^{*} , T_{d} = m_{d,e}$. Reconciliation between the $mu-tau$ reflection symmetries and observed $sin theta_{13}$ predicts $delta_{CP} simeq 203^{circ}$. Moreover, imposition of universal texture $(m_{f})_{11} = 0$ for $f=u,d, u,e$ predicts the normal hierarchy with the lightest neutrino mass $|m_{1}| = 6.26$ or $2.54$ meV.
In this paper, we consider a set of new symmetries in the SM, {it diagonal reflection} symmetries $R , m_{u, u}^{*} , R = m_{u, u}, ~ m_{d,e}^{*} = m_{d,e}$ with $R =$ diag $(-1,1,1)$. These generalized $CP$ symmetries predict the Majorana phases to
In this paper, we impose a magic symmetry on the neutrino mass matrix $M_{ u}$ with universal four-zero texture and diagonal reflection symmetries. Due to the magic symmetry, the MNS matrix has trimaximal mixing inevitably. Since the lepton sector ha
In this paper, we consider the diagonal reflection symmetries and three-zero texture in the SM. The three-zero texture has two less assumptions ($(M_{u})_{11} , (M_{ u})_{11} eq 0$) than the universal four-zero texture for mass matrices $(M_{f})_{11
Nonstandard interactions (NSIs), possible subleading effects originating from new physics beyond the Standard Model, may affect the propagation of neutrinos and eventually contribute to measurements of neutrino oscillations. Besides this, $ mu-tau $
We analyze the different parametrizations of a general four-zero texture mass matrices for quarks and leptons, that are able to reproduce the CKM and PMNS mixing matrices. This study is done through a Chi-Square analysis. In quark sector, only four s