ﻻ يوجد ملخص باللغة العربية
Nonstandard interactions (NSIs), possible subleading effects originating from new physics beyond the Standard Model, may affect the propagation of neutrinos and eventually contribute to measurements of neutrino oscillations. Besides this, $ mu-tau $ reflection symmetry, naturally predicted by non-Abelian discrete flavor symmetries, has been very successful in explaining the observed leptonic mixing patterns. In this work, we study the combined effect of both. We present an $S_4$ flavor model with $mu-tau$ reflection symmetry realized in both neutrino masses and NSIs. Under this formalism, we perform a detailed study for the upcoming neutrino experiments DUNE and T2HK. Our simulation results show that under the $mu-tau $ reflection symmetry, NSI parameters are further constrained and the mass ordering sensitivity is less affected by the presence of NSIs.
We investigate the consequences of $mu-tau$ reflection symmetry in presence of a light sterile neutrino for the $3+1$ neutrino mixing scheme. We discuss the implications of total $mu-tau$ reflection symmetry as well partial $mu-tau$ reflection symmet
We embed $mu-tau$ reflection symmetry into the minimal seesaw formalism, where two right-handed neutrinos are added to the Standard Model of particle physics. Assuming that both the left- and right-handed neutrino fields transform under $mu-tau$ refl
We discuss the viability of the $mu$--$tau$ interchange symmetry imposed on the neutrino mass matrix in the flavor space. Whereas the exact symmetry is shown to lead to textures of completely degenerate spectrum which is incompatible with the neutrin
We study the consequences of the $Z_2$-symmetry behind the $mu$--$tau$ universality in neutrino mass matrix. We then implement this symmetry in the type-I seesaw mechanism and show how it can accommodate all sorts of lepton mass hierarchies and gener
Inspired by the neutrino oscillations data, we consider the exact $mu-tau$ symmetry, implemented at the level of the neutrino mass matrix, as a good initial framework around which to study and describe neutrino phenomenology. Working in the diagonal