ﻻ يوجد ملخص باللغة العربية
Uncovering the risk transmitting path within economic sectors in China is crucial for understanding the stability of the Chinese economic system, especially under the current situation of the China-US trade conflicts. In this paper, we try to uncover the risk spreading channels by means of volatility spillovers within the Chinese sectors using stock market data. By applying the generalized variance decomposition framework based on the VAR model and the rolling window approach, a set of connectedness matrices is obtained to reveal the overall and dynamic spillovers within sectors. It is found that 17 sectors (mechanical equipment, electrical equipment, utilities, and so on) are risk transmitters and 11 sectors (national defence, bank, non-bank finance, and so on) are risk takers during the whole period. During the periods with the extreme risk events (the global financial crisis, the Chinese interbank liquidity crisis, the Chinese stock market plunge, and the China-US trade war), we observe that the connectedness measures significantly increase and the financial sectors play a buffer role in stabilizing the economic system. The robust tests suggest that our results are not sensitive to the changes of model parameters. Our results not only uncover the spillover effects within the Chinese sectors, but also highlight the deep understanding of the risk contagion patterns in the Chinese stock markets.
By adopting Multifractal detrended fluctuation (MF-DFA) analysis methods, the multifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange C
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial va
Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-li
Being able to forcast extreme volatility is a central issue in financial risk management. We present a large volatility predicting method based on the distribution of recurrence intervals between volatilities exceeding a certain threshold $Q$ for a f
Different investment strategies are adopted in short-term and long-term depending on the time scales, even though time scales are adhoc in nature. Empirical mode decomposition based Hurst exponent analysis and variance technique have been applied to