ﻻ يوجد ملخص باللغة العربية
Being able to forcast extreme volatility is a central issue in financial risk management. We present a large volatility predicting method based on the distribution of recurrence intervals between volatilities exceeding a certain threshold $Q$ for a fixed expected recurrence time $tau_Q$. We find that the recurrence intervals are well approximated by the $q$-exponential distribution for all stocks and all $tau_Q$ values. Thus a analytical formula for determining the hazard probability $W(Delta t |t)$ that a volatility above $Q$ will occur within a short interval $Delta t$ if the last volatility exceeding $Q$ happened $t$ periods ago can be directly derived from the $q$-exponential distribution, which is found to be in good agreement with the empirical hazard probability from real stock data. Using these results, we adopt a decision-making algorithm for triggering the alarm of the occurrence of the next volatility above $Q$ based on the hazard probability. Using a receiver operator characteristic (ROC) analysis, we find that this predicting method efficiently forecasts the occurrance of large volatility events in real stock data. Our analysis may help us better understand reoccurring large volatilities and more accurately quantify financial risks in stock markets.
Being able to predict the occurrence of extreme returns is important in financial risk management. Using the distribution of recurrence intervals---the waiting time between consecutive extremes---we show that these extreme returns are predictable on
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial va
By adopting Multifractal detrended fluctuation (MF-DFA) analysis methods, the multifractal nature is revealed in the high-frequency data of two typical indexes, the Shanghai Stock Exchange Composite 180 Index (SH180) and the Shenzhen Stock Exchange C
We investigate the probability distribution of the volatility return intervals $tau$ for the Chinese stock market. We rescale both the probability distribution $P_{q}(tau)$ and the volatility return intervals $tau$ as $P_{q}(tau)=1/bar{tau} f(tau/bar
Price limit trading rules are adopted in some stock markets (especially emerging markets) trying to cool off traders short-term trading mania on individual stocks and increase market efficiency. Under such a microstructure, stocks may hit their up-li