ﻻ يوجد ملخص باللغة العربية
The standard model of cosmology with postulated dark energy and dark matter sources may be considered as a fairly successful fitting model to observational data. However, this model leaves the question of the physical origin of these dark components open. Fully relativistic contributions that act like dark energy on large scales and like dark matter on smaller scales can be found through generalization of the standard model by spatially averaging the inhomogeneous Universe within general relativity. The spatially averaged 3+1 Einstein equations are effective balance equations that need a closure condition. Heading for closure we here explore topological constraints. Results are straightforwardly obtained for averaged 2+1 model universes. For the relevant 3+1 case, we employ a method based on the Gauss-Bonnet-Chern theorem generalized to Lorentzian spacetimes and implement a sandwich approach to obtain spatial average properties. The 3+1 topological approach supplies us with a new equation linking evolution of scalar invariants of the expansion tensor to the norm of the Weyl tensor. From this we derive general evolution equations for averaged scalar curvature and kinematical backreaction, and we discuss related evolution equations on this level of the hierarchy of averaged equations. We also discuss the relation between topological properties of cosmological manifolds and dynamical topology change, e.g. as resulting from the formation of black holes.
We construct boson stars in (4+1)-dimensional Gauss-Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate these in detail. While the thick wall limit is independent of the value of the Gauss-
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit a
Inflationary era of our Universe can be characterized as semi-classical because it can be described in the context of four-dimensional Einsteinss gravity involving quantum corrections. These string motivated corrections originate from quantum theorie
In this paper, we study the thermodynamics especially the $P$-$V$ criticality of the Friedmann-Robertson-Walker (FRW) universe in the novel 4-dimensional Gauss-Bonnet gravity, where we define the thermodynamic pressure $P$ from the cosmological const
The effect of the Gauss-Bonnet term on the existence and dynamical stability of thin-shell wormholes as negative tension branes is studied in the arbitrary dimensional spherically, planar, and hyperbolically symmetric spacetimes. We consider radial p