ﻻ يوجد ملخص باللغة العربية
Inflationary era of our Universe can be characterized as semi-classical because it can be described in the context of four-dimensional Einsteinss gravity involving quantum corrections. These string motivated corrections originate from quantum theories of gravity such as superstring theories and include higher gravitational terms as, Gauss-Bonnet and Chern-Simons terms. In this paper we investigated inflationary phenomenology coming from a scalar field, with quadratic curvature terms in the view of GW170817. Firstly, we derived the equations of motion, directly from the gravitational action. As a result, formed a system of differential equations with respect to Hubbles parameter and the inflaton field which was very complicated and cannot be solved analytically, even in the minimal coupling case. Based on the observations from GW170817, which have shown that the speed of the primordial gravitational wave is equal to the speed of light, our equations of motion where simplified after applying this constraint, the slow-roll approximations and neglecting the string corrections. We described the dynamics of inflationary phenomenology and proved that theories with Gauss-Bonnet term can be compatible with recent observations. Also, the Chern-Simons term leads to asymmetric generation and evolution of the two circular polarization states of gravitational wave. Finally, viable inflationary models are presented, consistent with the observational constraints. The possibility of a blue tilted tensor spectral index is briefly investigated.
In this paper we investigate the inflationary phenomenology of an Einstein-Gauss-Bonnet theory with the extension of a logarithmic modified $f(R)$ gravity, compatible with the GW170817 event. The main idea of our work is to study different results fo
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit a
In the present paper, we study the inflationary phenomenology of a $k$-inflation corrected Einstein-Gauss-Bonnet theory. Non-canonical kinetic terms are known for producing Jean instabilities or superluminal sound wave velocities in the aforementione
In this paper the focus is on inflationary dynamics in the context of Einstein Gauss-Bonnet gravitational theories. We investigate the implications of the slow-roll condition on the slow-roll indices and we investigate how the inflationary dynamical
We present a model of holographic dark energy in which the Infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the Infrared cutoff, and consequently the holographic d