ترغب بنشر مسار تعليمي؟ اضغط هنا

An X-ray View of the Hot Circum-Galactic Medium

88   0   0.0 ( 0 )
 نشر من قبل Jiang-Tao Li Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jiang-Tao Li




اسأل ChatGPT حول البحث

The hot circum-galactic medium (CGM) represents the hot gas distributed beyond the stellar content of the galaxies while typically within their dark matter halos. It serves as a depository of energy and metal-enriched materials from galactic feedback and a reservoir from which the galaxy acquires fuels to form stars. It thus plays a critical role in the coevolution of galaxies and their environments. X-rays are one of the best ways to trace the hot CGM. I will briefly review what we have learned about the hot CGM based on X-ray observations over the past two decades, and what we still do not know. I will also briefly prospect what may be the foreseeable breakthrough in the next one or two decades with future X-ray missions.



قيم البحث

اقرأ أيضاً

We present a detailed spectroscopic study of the hot gas toward the Galactic bulge along the 4U 1820-303 sight line by a combination analysis of emission and absorption spectra. In addition to the absorption lines of OVII Kalpha, OVII Kbeta, OVIII Ka lpha and NeIX Kalpha by Chandra LTGS as shown by previous works, Suzaku detected clearly the emission lines of OVII, OVIII, NeIX and NeX from the vicinity. We used simplified plasma models with constant temperature and density. Evaluation of the background and foreground emission was performed carefully, including stellar X-ray contribution based on the recent X-ray observational results and stellar distribution simulator. If we assume that one plasma component exists in front of 4U1820-303 and the other one at the back, the obtained temperatures are T= 1.7 +/- 0.2 MK for the front-side plasma and T=3.9(+0.4-0.3) MK for the backside. This scheme is consistent with a hot and thick ISM disk as suggested by the extragalactic source observations and an X-ray bulge around the Galactic center.
379 - Jiang-Tao Li 2017
We present the analysis of the XMM-Newton data of the Circum-Galactic Medium of MASsive Spirals (CGM-MASS) sample of six extremely massive spiral galaxies in the local Universe. All the CGM-MASS galaxies have diffuse X-ray emission from hot gas detec ted above the background extending $sim(30-100)rm~kpc$ from the galactic center. This doubles the existing detection of such extended hot CGM around massive spiral galaxies. The radial soft X-ray intensity profile of hot gas can be fitted with a $beta$-function with the slope typically in the range of $beta=0.35-0.55$. This range, as well as those $beta$ values measured for other massive spiral galaxies, including the Milky Way (MW), are in general consistent with X-ray luminous elliptical galaxies of similar hot gas luminosity and temperature, and with those predicted from a hydrostatic isothermal gaseous halo. Hot gas in such massive spiral galaxy tends to have temperature comparable to its virial value, indicating the importance of gravitational heating. This is in contrast to lower mass galaxies where hot gas temperature tends to be systematically higher than the virial one. The ratio of the radiative cooling to free fall timescales of hot gas is much larger than the critical value of $sim10$ throughout the entire halos of all the CGM-MASS galaxies, indicating the inefficiency of gas cooling and precipitation in the CGM. The hot CGM in these massive spiral galaxies is thus most likely in a hydrostatic state, with the feedback material mixed with the CGM, instead of escaping out of the halo or falling back to the disk. We also homogenize and compare the halo X-ray luminosity measured for the CGM-MASS galaxies and other galaxy samples and discuss the missing galactic feedback detected in these massive spiral galaxies.
We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photomet ric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)
122 - L.Sidoli 2011
We report on a 40 ks long, uninterrupted X-ray observation of the candidate supergiant fast X-ray transient (SFXT) IGRJ16418-4532 performed with XMM-Newton on February 23, 2011. This high mass X-ray binary lies in the direction of the Norma arm, at a n estimated distance of 13 kpc. During the observation, the source showed strong variability exceeding two orders of magnitudes, never observed before from this source. Its X-ray flux varied in the range from 0.1 counts/s to about 15 counts/s, with several bright flares of different durations (from a few hundreds to a few thousands seconds) and sometimes with a quasi-periodic behavior. This finding supports the previous suggestion that IGRJ16418-4532 is a member of the SFXTs class. In our new observation we measured a pulse period of 1212+/-6 s, thus confirming that this binary contains a slowly rotating neutron star. During the periods of low luminosity the source spectrum is softer and more absorbed than during the flares. A soft excess is present below 2 keV in the cumulative flares spectrum, possibly due to ionized wind material at a distance similar to the neutron star accretion radius. The kind of X-ray variability displayed by IGRJ16418-4532, its dynamic range and time scale,together with the sporadic presence of quasi-periodic flaring, all are suggestive of a transitional accretion regime between pure wind accretion and full Roche lobe overflow. We discuss here for the first time this hypothesis to explain the behavior of IGRJ16418-4532 and, possibly, of other SFXTs with short orbital periods.
In the context of the FLASHLIGHT survey, we obtained deep narrow band images of 15 $zsim2$ quasars with GMOS on Gemini-South in an effort to measure Ly$alpha$ emission from circum- and inter-galactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Ly$alpha$ nebulae (SB~10$^{-17}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ at distances >50 kpc) around any of our sources, although we routinely ($simeq47$%) detect smaller scale <50 kpc Ly$alpha$ emission at this SB level emerging from either the extended narrow emission line regions powered by the quasars or by star-formation in their host galaxies. We stack our 15 deep images to study the average extended Ly$alpha$ surface brightness profile around $zsim2$ quasars, carefully PSF-subtracting the unresolved emission component and paying close attention to sources of systematic error. Our analysis, which achieves an unprecedented depth, reveals a surface brightness of SB$_{rm Lyalpha}sim10^{-19}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ at $sim200$ kpc, with a $2.3sigma$ detection of Ly$alpha$ emission at SB$_{rm Lyalpha}=(5.5pm3.1)times10^{-20}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$ within an annulus spanning 50 kpc <R< 500 kpc from the quasars. Assuming this Ly$alpha$ emission is powered by fluorescence from highly ionized gas illuminated by the bright central quasar, we deduce an average volume density of $n_{rm H}=0.6times10^{-2}$ cm$^{-3}$ on these large scales. Our results are in broad agreement with the densities suggested by cosmological hydrodynamical simulations of massive ($Msimeq10^{12.5}M_odot$) quasar hosts, however they indicate that the typical quasars at these redshifts are surrounded by gas that is a factor of ~100 times less dense than the (~1 cm$^{-3}$) gas responsible for the giant bright Ly$alpha$ nebulae around quasars recently discovered by our group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا