ﻻ يوجد ملخص باللغة العربية
We present the analysis of the XMM-Newton data of the Circum-Galactic Medium of MASsive Spirals (CGM-MASS) sample of six extremely massive spiral galaxies in the local Universe. All the CGM-MASS galaxies have diffuse X-ray emission from hot gas detected above the background extending $sim(30-100)rm~kpc$ from the galactic center. This doubles the existing detection of such extended hot CGM around massive spiral galaxies. The radial soft X-ray intensity profile of hot gas can be fitted with a $beta$-function with the slope typically in the range of $beta=0.35-0.55$. This range, as well as those $beta$ values measured for other massive spiral galaxies, including the Milky Way (MW), are in general consistent with X-ray luminous elliptical galaxies of similar hot gas luminosity and temperature, and with those predicted from a hydrostatic isothermal gaseous halo. Hot gas in such massive spiral galaxy tends to have temperature comparable to its virial value, indicating the importance of gravitational heating. This is in contrast to lower mass galaxies where hot gas temperature tends to be systematically higher than the virial one. The ratio of the radiative cooling to free fall timescales of hot gas is much larger than the critical value of $sim10$ throughout the entire halos of all the CGM-MASS galaxies, indicating the inefficiency of gas cooling and precipitation in the CGM. The hot CGM in these massive spiral galaxies is thus most likely in a hydrostatic state, with the feedback material mixed with the CGM, instead of escaping out of the halo or falling back to the disk. We also homogenize and compare the halo X-ray luminosity measured for the CGM-MASS galaxies and other galaxy samples and discuss the missing galactic feedback detected in these massive spiral galaxies.
The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these missing baryons may be stored in a hot tenuous circum-galactic medium (CGM) aro
The presence of hot gaseous coronae around present-day massive spiral galaxies is a fundamental prediction of galaxy formation models. However, our observational knowledge remains scarce, since to date only four gaseous coronae were detected around s
We present a deep XMM-Newton observation of the extremely massive, rapidly rotating, relativistic-jet-launching spiral galaxy 2MASX J23453268-0449256. Diffuse X-ray emission from the hot gaseous halo around the galaxy is robustly detected out to a ra
We present IRAM 30m observations of molecular lines of CO and its isotopologues from the massive spiral galaxy NGC 5908 selected from the CGM-MASS sample. $^{12}$CO $J=1-0$, $^{12}$CO $J=2-1$, and $^{13}$CO $J=1-0$ lines have been detected in most of
The hot circum-galactic medium (CGM) represents the hot gas distributed beyond the stellar content of the galaxies while typically within their dark matter halos. It serves as a depository of energy and metal-enriched materials from galactic feedback