ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum statistical query learning

103   0   0.0 ( 0 )
 نشر من قبل Srinivasan Arunachalam
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a learning model called the quantum statistical learning QSQ model, which extends the SQ learning model introduced by Kearns to the quantum setting. Our model can be also seen as a restriction of the quantum PAC learning model: here, the learner does not have direct access to quantum examples, but can only obtain estimates of measurement statistics on them. Theoretically, this model provides a simple yet expressive setting to explore the power of quantum examples in machine learning. From a practical perspective, since simpler operations are required, learning algorithms in the QSQ model are more feasible for implementation on near-term quantum devices. We prove a number of results about the QSQ learning model. We first show that parity functions, (log n)-juntas and polynomial-sized DNF formulas are efficiently learnable in the QSQ model, in contrast to the classical setting where these problems are provably hard. This implies that many of the advantages of quantum PAC learning can be realized even in the more restricted quantum SQ learning model. It is well-known that weak statistical query dimension, denoted by WSQDIM(C), characterizes the complexity of learning a concept class C in the classical SQ model. We show that log(WSQDIM(C)) is a lower bound on the complexity of QSQ learning, and furthermore it is tight for certain concept classes C. Additionally, we show that this quantity provides strong lower bounds for the small-bias quantum communication model under product distributions. Finally, we introduce the notion of private quantum PAC learning, in which a quantum PAC learner is required to be differentially private. We show that learnability in the QSQ model implies learnability in the quantum private PAC model. Additionally, we show that in the private PAC learning setting, the classical and quantum sample complexities are equal, up to constant factors.

قيم البحث

اقرأ أيضاً

95 - Harry Buhrman 1999
We combine the classical notions and techniques for bounded query classes with those developed in quantum computing. We give strong evidence that quantum queries to an oracle in the class NP does indeed reduce the query complexity of decision problem s. Under traditional complexity assumptions, we obtain an exponential speedup between the quantum and the classical query complexity of function classes. For decision problems and function classes we obtain the following results: o P_||^NP[2k] is included in EQP_||^NP[k] o P_||^NP[2^(k+1)-2] is included in EQP^NP[k] o FP_||^NP[2^(k+1)-2] is included in FEQP^NP[2k] o FP_||^NP is included in FEQP^NP[O(log n)] For sets A that are many-one complete for PSPACE or EXP we show that FP^A is included in FEQP^A[1]. Sets A that are many-one complete for PP have the property that FP_||^A is included in FEQP^A[1]. In general we prove that for any set A there is a set X such that FP^A is included in FEQP^X[1], establishing that no set is superterse in the quantum setting.
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm s as much as possible. We show tight bounds for a number of problems, specifically Theta((n/p)^{2/3}) p-parallel queries for element distinctness and Theta((n/p)^{k/(k+1)} for k-sum. Our upper bounds are obtained by parallelized quantum walk algorithms, and our lower bounds are based on a relatively small modification of the adversary lower bound method, combined with recent results of Belovs et al. on learning graphs. We also prove some general bounds, in particular that quantum and classical p-parallel complexity are polynomially related for all total functions f when p is small compared to fs block sensitivity.
We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificate s. In particular, this shows that the zero-error quantum query complexity of evaluating such formulas is O(d^{(k+1)/2}) (again neglecting a logarithmic factor). Our lower bound relies on the fact that the quantum adversary method obeys a direct sum theorem.
We present three new quantum algorithms in the quantum query model for textsc{graph-collision} problem: begin{itemize} item an algorithm based on tree decomposition that uses $Oleft(sqrt{n}t^{sfrac{1}{6}}right)$ queries where $t$ is the treewidth of the graph; item an algorithm constructed on a span program that improves a result by Gavinsky and Ito. The algorithm uses $O(sqrt{n}+sqrt{alpha^{**}})$ queries, where $alpha^{**}(G)$ is a graph parameter defined by [alpha^{**}(G):=min_{VCtext{-- vertex cover of}G}{max_{substack{Isubseteq VCItext{-- independent set}}}{sum_{vin I}{deg{v}}}};] item an algorithm for a subclass of circulant graphs that uses $O(sqrt{n})$ queries. end{itemize} We also present an example of a possibly difficult graph $G$ for which all the known graphs fail to solve graph collision in $O(sqrt{n} log^c n)$ queries.
Buhrman, Cleve and Wigderson (STOC98) showed that for every Boolean function f : {-1,1}^n to {-1,1} and G in {AND_2, XOR_2}, the bounded-error quantum communication complexity of the composed function f o G equals O(Q(f) log n), where Q(f) denotes th e bounded-error quantum query complexity of f. This is in contrast with the classical setting, where it is easy to show that R^{cc}(f o G) < 2 R(f), where R^{cc} and R denote bounded-error communication and query complexity, respectively. Chakraborty et al. (CCC20) exhibited a total function for which the log n overhead in the BCW simulation is required. We improve upon their result in several ways. We show that the log n overhead is not required when f is symmetric, generalizing a result of Aaronson and Ambainis for the Set-Disjointness function (Theory of Computing05). This upper bound assumes a shared entangled state, though for most symmetric functions the assumed number of entangled qubits is less than the communication and hence could be part of the communication. To prove this, we design an efficient distributed version of noisy amplitude amplification that allows us to prove the result when f is the OR function. In view of our first result, one may ask whether the log n overhead in the BCW simulation can be avoided even when f is transitive. We give a strong negative answer by showing that the log n overhead is still necessary for some transitive functions even when we allow the quantum communication protocol an error probability that can be arbitrarily close to 1/2. We also give, among other things, a general recipe to construct functions for which the log n overhead is required in the BCW simulation in the bounded-error communication model, even if the parties are allowed to share an arbitrary prior entangled state for free.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا