ﻻ يوجد ملخص باللغة العربية
As a popular meta-learning approach, the model-agnostic meta-learning (MAML) algorithm has been widely used due to its simplicity and effectiveness. However, the convergence of the general multi-step MAML still remains unexplored. In this paper, we develop a new theoretical framework to provide such convergence guarantee for two types of objective functions that are of interest in practice: (a) resampling case (e.g., reinforcement learning), where loss functions take the form in expectation and new data are sampled as the algorithm runs; and (b) finite-sum case (e.g., supervised learning), where loss functions take the finite-sum form with given samples. For both cases, we characterize the convergence rate and the computational complexity to attain an $epsilon$-accurate solution for multi-step MAML in the general nonconvex setting. In particular, our results suggest that an inner-stage stepsize needs to be chosen inversely proportional to the number $N$ of inner-stage steps in order for $N$-step MAML to have guaranteed convergence. From the technical perspective, we develop novel techniques to deal with the nested structure of the meta gradient for multi-step MAML, which can be of independent interest.
Meta-learning for few-shot learning entails acquiring a prior over previous tasks and experiences, such that new tasks be learned from small amounts of data. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful p
Although model-agnostic meta-learning (MAML) is a very successful algorithm in meta-learning practice, it can have high computational cost because it updates all model parameters over both the inner loop of task-specific adaptation and the outer-loop
Model-agnostic meta-learners aim to acquire meta-learned parameters from similar tasks to adapt to novel tasks from the same distribution with few gradient updates. With the flexibility in the choice of models, those frameworks demonstrate appealing
Recently, model-agnostic meta-learning (MAML) has garnered tremendous attention. However, stochastic optimization of MAML is still immature. Existing algorithms for MAML are based on the ``episode idea by sampling a number of tasks and a number of da
We propose a new computationally-efficient first-order algorithm for Model-Agnostic Meta-Learning (MAML). The key enabling technique is to interpret MAML as a bilevel optimization (BLO) problem and leverage the sign-based SGD(signSGD) as a lower-leve