ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum criticality of dipolar spin chains

209   0   0.0 ( 0 )
 نشر من قبل Aldo Isidori
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave theory the magnon dispersion for small momenta k is [Delta^2 + v_k^2 k^2]^{1/2}, where Delta^2 propto |h - h_c| and v_k^2 propto |ln k|. For fields close to h_c linear spin-wave theory breaks down and we investigate the system using density-matrix and functional renormalization group methods. The Ginzburg regime where non-Gaussian fluctuations are important is found to be rather narrow on the ordered side of the transition, and very broad on the disordered side.



قيم البحث

اقرأ أيضاً

We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is convenien tly implemented in terms of SU(2)$_k$ anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them quantum critical glasses. We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit $krightarrowinfty$. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel non-equilibrium critical phases of matter.
It was proposed in [(https://doi.org/10.1103/PhysRevLett.114.145301){Chen et al., Phys. Rev. Lett. $mathbf{114}$, 145301 (2015)}] that spin-2 chains display an extended critical phase with enhanced SU$(3)$ symmetry. This hypothesis is highly unexpect ed for a spin-2 system and, as we argue, would imply an unconventional mechanism for symmetry emergence. Yet, the absence of convenient critical points for renormalization group perturbative expansions, allied with the usual difficulty in the convergence of numerical methods in critical or small-gapped phases, renders the verification of this hypothetical SU$(3)$-symmetric phase a non-trivial matter. By tracing parallels with the well-understood phase diagram of spin-1 chains and searching for signatures robust against finite-size effects, we draw criticism on the existence of this phase. We perform non-Abelian density matrix renormalization group studies of multipolar static correlation function, energy spectrum scaling, single-mode approximation, and entanglement spectrum to shed light on the problem. We determine that the hypothetical SU$(3)$ spin-2 phase is, in fact, dominated by ferro-octupolar correlations and also observe a lack of Luttinger-liquid-like behavior in correlation functions that suggests that is perhaps not critical. We further construct an infinite family of spin-$S$ systems with similar ferro-octupolar-dominated quasi-SU$(3)$-like phenomenology; curiously, we note that the spin-3 version of the problem is located in a subspace of exact G$_2$ symmetry, making this a point of interest for search of Fibonacci topological properties in magnetic systems.
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems as well as disordered ones. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization group transformation. These discrete sequences are therefore fixed points of a emph{functional} renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition.
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultra-cold atoms. We investigate such non-trivial quantum dynamics in a new setting: a spin-1 bili near-biquadratic chain. It has a solvable entangled groundstate, but a gapless excitation spectrum that is poorly understood. By using large-scale DMRG simulations, we find that the lowest excitations have a dynamical exponent $z$ that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent $2leq z <2.7$, which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wavefunction for the groundstate, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the non-equilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in 2d.
We revisit the critical behavior of the sub-ohmic spin-boson model. Analysis of both the leading and subleading terms in the temperature dependence of the inverse static local spin susceptibility at the quantum critical point, calculated using a nume rical renormalization-group method, provides evidence that the quantum critical point is interacting in cases where the quantum-to-classical mapping would predict mean-field behavior. The subleading term is shown to be consistent with an w/T scaling of the local dynamical susceptibility, as is the leading term. The frequency and temperature dependences of the local spin susceptibility in the strong-coupling (delocalized) regime are also presented. We attribute the violation of the quantum-to-classical mapping to a Berry-phase term in a continuum path-integral representation of the model. This effect connects the behavior discussed here with its counterparts in models with continuous spin symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا