ﻻ يوجد ملخص باللغة العربية
The ongoing development of intense high-harmonic generation (HHG) sources has recently enabled highly nonlinear ionization of atoms by the absorption of at least 10 extreme-ultraviolet (XUV) photons within a single atom [Senfftleben textit{et al.}, arXiv1911.01375]. Here we investigate the role that reshaping of the fundamental, few-cycle, near-infrared (NIR) driving laser within the 30-cm-long HHG Xe medium plays in the generation of the intense HHG pulses. Using an incident NIR intensity that is higher than what is required for phase-matched HHG, signatures of reshaping are found by measuring the NIR blueshift and the fluorescence from the HHG medium along the propagation axis. These results are well reproduced by numerical calculations that show temporal compression of the NIR pulses in the HHG medium. The simulations predict that after refocusing an XUV beam waist radius of 320 nm and a clean attosecond pulse train can be obtained in the focal plane, with an estimated XUV peak intensity of 9x10^15 W/cm^2. Our results show that XUV intensities that were previously only available at large-scale facilities can now be obtained using moderately powerful table-top light sources.
Isolated attosecond pulses (IAPs) produced through laser-driven high-harmonic generation (HHG) hold promise for unprecedented insight into biological processes via attosecond x-ray diffraction with tabletop sources. However, efficient scaling of HHG
In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regim
We present a novel spectroscopic technique for second harmonic generation (SHG) using femtosecond laser pulses at 30~kHz repetition rate, which nevertheless provides high spectral resolution limited only by the spectrometer. The potential of this met
The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.
We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained fro