ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of the WHIZARD generator for linear colliders

169   0   0.0 ( 0 )
 نشر من قبل Juergen Reuter
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This summarizes the talk given at the LCWS 2019 conference in Sendai, Japan, on the progress of the WHIZARD event generator in terms of new physics features and technical improvements relevant for the physics programme of future lepton and especially linear colliders. It takes as a reference the version 2.8.2 released in October 2019, and also takes into account the development until version 2.8.3 to be released in February 2020.

قيم البحث

اقرأ أيضاً

This document summarises the current theoretical and experimental status of the di-Higgs boson production searches, and of the direct and indirect constraints on the Higgs boson self-coupling, with the wish to serve as a useful guide for the next yea rs. The document discusses the theoretical status, including state-of-the-art predictions for di-Higgs cross sections, developments on the effective field theory approach, and studies on specific new physics scenarios that can show up in the di-Higgs final state. The status of di-Higgs searches and the direct and indirect constraints on the Higgs self-coupling at the LHC are presented, with an overview of the relevant experimental techniques, and covering all the variety of relevant signatures. Finally, the capabilities of future colliders in determining the Higgs self-coupling are addressed, comparing the projected precision that can be obtained in such facilities. The work has started as the proceedings of the Di-Higgs workshop at Colliders, held at Fermilab from the 4th to the 9th of September 2018, but it went beyond the topics discussed at that workshop and included further developments.
The Monte Carlo program {tt WWGENPV}, designed for computing distributions and generating events for four-fermion production in $e^+ e^- $ collisions, is described. The new version, 2.0, includes the full set of the electroweak (EW) tree-level matrix elements for double- and single-$W$ production, initial- and final-state photonic radiation including $p_T / p_L$ effects in the Structure Function formalism, all the relevant non-QED corrections (Coulomb correction, naive QCD, leading EW corrections). An hadronisation interface to {tt JETSET} is also provided. The program can be used in a three-fold way: as a Monte Carlo integrator for weighted events, providing predictions for several observables relevant for $W$ physics; as an adaptive integrator, giving predictions for cross sections, energy and invariant mass losses with high numerical precision; as an event generator for unweighted events, both at partonic and hadronic level. In all the branches, the code can provide accurate and fast results.
We study the possible dynamics associated with leptonic charge in future linear colliders. Leptophilic massive vector boson, Z_(l), have been investigated through the process e^(+)e^(-) -> mu^(+)mu^(-). We have shown that ILC and CLIC will give oppor tunity to observe Z_(l) with masses up to the center of mass energy if the corresponding coupling constant g_(l) exceeds 10^(-3).
We describe the universal Monte-Carlo event generator WHIZARD. The program automatically computes complete tree-level matrix elements, integrates them over phase space, evaluates distributions of observables, and generates unweighted event samples that can be used directly in detector simulation. There is no principal limit on the process complexity; using current hardware, the program has successfully been applied to hard scattering processes with up to eight particles in the final state. Matrix elements are computed as helicity amplitudes, so spin and color correlations are retained. The Standard Model, the MSSM, and many alternative models such as Little Higgs, anomalous couplings, or effects of extra dimensions or noncommutative SM extensions have been implemented. Using standard interfaces to PDF, beamstrahlung, parton shower and hadronization programs, WHIZARD generates complete physical events and covers physics at hadron, lepton, and photon colliders.
In this paper we develop a projective phase space generator appropriate for hadron collider geometry. The generator integrates over bremsstrahlung events which project back to a single, fixed Born event. The projection is dictated by the experimental jet algorithm allowing for the forward branching phase space generator to integrate out the jet masses and initial state radiation. When integrating over the virtual and bremsstrahlung amplitudes this results in a single K-factor, assigning an event probability to each Born event. This K-factor is calculable as a perturbative expansion in the strong coupling constant. One can build observables from the Born kinematics, giving identical results to tradi- tional observables as long as the observable does not depend on the infrared sensitive jet mass or initial state radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا