ﻻ يوجد ملخص باللغة العربية
The Monte Carlo program {tt WWGENPV}, designed for computing distributions and generating events for four-fermion production in $e^+ e^- $ collisions, is described. The new version, 2.0, includes the full set of the electroweak (EW) tree-level matrix elements for double- and single-$W$ production, initial- and final-state photonic radiation including $p_T / p_L$ effects in the Structure Function formalism, all the relevant non-QED corrections (Coulomb correction, naive QCD, leading EW corrections). An hadronisation interface to {tt JETSET} is also provided. The program can be used in a three-fold way: as a Monte Carlo integrator for weighted events, providing predictions for several observables relevant for $W$ physics; as an adaptive integrator, giving predictions for cross sections, energy and invariant mass losses with high numerical precision; as an event generator for unweighted events, both at partonic and hadronic level. In all the branches, the code can provide accurate and fast results.
The status of predictions for four-fermion production at e-e+ colliders is reviewed with an emphasis on the developments after the LEP2 era and an outlook to the challenges posed by the precision program at future colliders.
A description and the use of an event-generator code for two-photon processes at e+e- colliders, TREPS, are presented. This program uses an equivalent photon approximation in which the virtuality of photons is taken into account. It is applicable to
We discuss the status and some ongoing upgrades of the ZFITTER program for applications at e+e- colliders LEP1/SLC, LEP2, GigaZ, and TESLA. The inclusion of top quark pair production is under work.
We describe the new version of the Monte Carlo event generator WOPPER for four fermion production through W-pairs including resummed leading logarithmic QED radiative corrections. Among the new features included are singly resonant background diagrams and anomalous triple gauge boson couplings.
Motivated by the ATLAS and CMS announcements of the excesses of di-photon events, we discuss the production and decay processes of di-photon resonance at future $e^+e^-$ colliders. We assume that the excess of the di-photon events at the LHC is expla