ﻻ يوجد ملخص باللغة العربية
This paper revisits the Interaction Abstract Machine (IAM), a machine based on Girards Geometry of Interaction, introduced by Mackie and Danos & Regnier. It is an unusual machine, not relying on environments, presented on linear logic proof nets, and whose soundness proof is convoluted and passes through various other formalisms. Here we provide a new direct proof of its correctness, based on a variant of Sandss improvements, a natural notion of bisimulation. Moreover, our proof is carried out on a new presentation of the IAM, defined as a machine acting directly on $lambda$-terms, rather than on linear logic proof nets.
The space complexity of functional programs is not well understood. In particular, traditional implementation techniques are tailored to time efficiency, and space efficiency induces time inefficiencies, as it prefers re-computing to saving. Girards
We graft synchronization onto Girards Geometry of Interaction in its most concrete form, namely token machines. This is realized by introducing proof-nets for SMLL, an extension of multiplicative linear logic with a specific construct modeling synchr
Probabilistic transition system specifications (PTSSs) in the $nt mu ftheta / ntmu xtheta$ format provide structural operational semantics for Segala-type systems that exhibit both probabilistic and nondeterministic behavior and guarantee that bisimi
Type-two constructions abound in cryptography: adversaries for encryption and authentication schemes, if active, are modeled as algorithms having access to oracles, i.e. as second-order algorithms. But how about making cryptographic schemes themselve
It is well-known that constructing models of higher-order probabilistic programming languages is challenging. We show how to construct step-indexed logical relations for a probabilistic extension of a higher-order programming language with impredicat