ترغب بنشر مسار تعليمي؟ اضغط هنا

The Geometry of Synchronization (Long Version)

154   0   0.0 ( 0 )
 نشر من قبل Ugo Dal Lago
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We graft synchronization onto Girards Geometry of Interaction in its most concrete form, namely token machines. This is realized by introducing proof-nets for SMLL, an extension of multiplicative linear logic with a specific construct modeling synchronization points, and of a multi-token abstract machine model for it. Interestingly, the correctness criterion ensures the absence of deadlocks along reduction and in the underlying machine, this way linking logical and operational properties.



قيم البحث

اقرأ أيضاً

We study multitoken interaction machines in the context of a very expressive logical system with exponentials, fixpoints and synchronization. The advantage of such machines is to provide models in the style of the Geometry of Interaction, i.e., an in teractive semantics which is close to low-level implementation. On the one hand, we prove that despite the inherent complexity of the framework, interaction is guaranteed to be deadlock free. On the other hand, the resulting logical system is powerful enough to embed PCF and to adequately model its behaviour, both when call-by-name and when call-by-value evaluation are considered. This is not the case for single-token stateless interactive machines.
The space complexity of functional programs is not well understood. In particular, traditional implementation techniques are tailored to time efficiency, and space efficiency induces time inefficiencies, as it prefers re-computing to saving. Girards geometry of interaction underlies an alternative approach based on the interaction abstract machine (IAM), claimed as space efficient in the literature. It has also been conjectured to provide a reasonable notion of space for the lambda-calculus, but such an important result seems to be elusive. In this paper we introduce a new intersection type system precisely measuring the space consumption of the IAM on the typed term. Intersection types have been repeatedly used to measure time, which they achieve by dropping idempotency, turning intersections into multisets. Here we show that the space consumption of the IAM is connected to a further structural modification, turning multisets into trees. Tree intersection types lead to a finer understanding of some space complexity results from the literature. They also shed new light on the conjecture about reasonable space: we show that the usual way of encoding Turing machines into the lambda calculus cannot be used to prove that the space of the IAM is a reasonable cost model.
This paper revisits the Interaction Abstract Machine (IAM), a machine based on Girards Geometry of Interaction, introduced by Mackie and Danos & Regnier. It is an unusual machine, not relying on environments, presented on linear logic proof nets, and whose soundness proof is convoluted and passes through various other formalisms. Here we provide a new direct proof of its correctness, based on a variant of Sandss improvements, a natural notion of bisimulation. Moreover, our proof is carried out on a new presentation of the IAM, defined as a machine acting directly on $lambda$-terms, rather than on linear logic proof nets.
Type-two constructions abound in cryptography: adversaries for encryption and authentication schemes, if active, are modeled as algorithms having access to oracles, i.e. as second-order algorithms. But how about making cryptographic schemes themselve s higher-order? This paper gives an answer to this question, by first describing why higher-order cryptography is interesting as an object of study, then showing how the concept of probabilistic polynomial time algorithm can be generalized so as to encompass algorithms of order strictly higher than two, and finally proving some positive and negative results about the existence of higher-order cryptographic primitives, namely authentication schemes and pseudorandom functions.
It is well-known that constructing models of higher-order probabilistic programming languages is challenging. We show how to construct step-indexed logical relations for a probabilistic extension of a higher-order programming language with impredicat ive polymorphism and recursive types. We show that the resulting logical relation is sound and complete with respect to the contextual preorder and, moreover, that it is convenient for reasoning about concrete program equivalences. Finally, we extend the language with dynamically allocated first-order references and show how to extend the logical relation to this language. We show that the resulting relation remains useful for reasoning about examples involving both state and probabilistic choice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا