ﻻ يوجد ملخص باللغة العربية
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets. We investigate the hyperfine and nuclear quadrupole interactions for $^{161}$Dy and $^{163}$Dy nucleus in anionic DyPc$_2$ (Pc=phthalocyanine) single-molecule magnets, using multiconfigurational ab-initio methods (beyond density-functional theory) including spin-orbit interaction. The two isotopes of Dy are chosen because the others have zero nuclear spin. Both isotopes have the nuclear spin $I=5/2$, although the magnitude and sign of the nuclear magnetic moment differ from each other. The large energy gap between the electronic ground and first-excited Kramers doublets, allows us to map the microscopic hyperfine and quadrupole interaction Hamiltonian onto an effective Hamiltonian with an electronic pseudo-spin $S_{rm eff}=1/2$ that corresponds to the ground Kramers doublet. Our ab-initio calculations show that the coupling between the nuclear spin and electronic orbital angular momentum contributes the most to the hyperfine interaction and that both the hyperfine and nuclear quadrupole interactions for $^{161}$Dy and $^{163}$Dy nucleus are much smaller than those for $^{159}$Tb nucleus in TbPc$_2$ single-molecule magnets. The calculated separations of the electronic-nuclear levels are comparable to experimental data reported for $^{163}$DyPc$_2$. We demonstrate that hyperfine interaction for Dy Kramers ion leads to tunnel splitting (or quantum tunneling of magnetization) at zero field. This effect does not occur for TbPc$_2$ single-molecule magnets. The magnetic field values of the avoided level crossings for $^{161}$DyPc$_2$ and $^{163}$DyPc$_2$ are found to be noticeably different, which can be observed from experiment.
Lanthanide-based single-ion magnetic molecules can have large magnetic hyperfine interactions as well as large magnetic anisotropy. Recent experimental studies reported tunability of these properties by changes of chemical environments or by applicat
Molecular spin qubits with long spin coherence time as well as non-invasive operation methods on such qubits are in high demand. It was shown that both molecular electronic and nuclear spin levels can be used as qubits. In solid state systems with do
We introduce a system-independent method to derive effective atomic C$_6$ coefficients and polarizabilities in molecules and materials purely from charge population analysis. This enables the use of dispersion-correction schemes in electronic structu
The hyperfine interactions at the uranium site in the antiferromagnetic USb2 compound were calculated within the density functional theory (DFT) employing the augmented plane wave plus local orbital (APW+lo) method. We investigated the dependence of
The odd isotopologues of ytterbium monohydroxide, $^{171,173}$YbOH, have been identified as promising molecules in which to measure parity (P) and time reversal (T) violating physics. Here we characterize the $tilde{A}^{2}Pi_{1/2}(0,0,0)-tilde{X}^2Si