ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically tuned hyperfine spectrum in neutral Tb(II)(Cp$^{rm{iPr5}}$)$_2$ single-molecule magnet

72   0   0.0 ( 0 )
 نشر من قبل Aleksander Wysocki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular spin qubits with long spin coherence time as well as non-invasive operation methods on such qubits are in high demand. It was shown that both molecular electronic and nuclear spin levels can be used as qubits. In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels when the electron spin density is high at the nucleus of the dopant. Inspired by such solid-state systems, we propose that divalent lanthanide (Ln) complexes with an unusual electronic configuration of Ln$^{2+}$ have a strong interaction between the Ln nuclear spin and the electronic degrees of freedom, which renders electrical tuning of the interaction. As an example, we study electronic structure and hyperfine interaction of the $^{159}$Tb nucleus in a neutral Tb(II)(Cp$^{rm{iPr5}}$)$_2$ single-molecule magnet (SMM) using the complete active space self-consistent field method with spin-orbit interaction included within the restricted active space state interaction. Our calculations show that the low-energy states arise from $4f^8(6s,5d_{z^2})^1$, 4$f^8$(5$d_{x^2-y^2}$)$^1$, and $4f^8(5d_{xy})^1$ configurations. We compute the hyperfine interaction parameters and the electronic-nuclear spectrum within our multiconfigurational approach. We find that the hyperfine interaction is about one order of magnitude greater than that for Tb(III)Pc$_2$ SMMs. This stems from the strong Fermi contact interaction between the Tb nuclear spin and the electron spin density at the nucleus that originates from the occupation of the $(6s,5d)$ orbitals. We also uncover that the response of the Fermi contact term to electric field results in electrical tuning of the electronic-nuclear level separations. This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.

قيم البحث

اقرأ أيضاً

Lanthanide-based single-ion magnetic molecules can have large magnetic hyperfine interactions as well as large magnetic anisotropy. Recent experimental studies reported tunability of these properties by changes of chemical environments or by applicat ion of external stimuli for device applications. In order to provide insight onto the origin and mechanism of such tunability, here we investigate the magnetic hyperfine and nuclear quadrupole interactions for $^{159}$Tb nucleus in TbPc$_2$ (Pc=phthalocyanine) single-molecule magnets using multireference ab-initio methods including spin-orbit interaction. Since the electronic ground and first-excited (quasi)doublets are well separated in energy, the microscopic Hamiltonian can be mapped onto an effective Hamiltonian with an electronic pseudo-spin $S=1/2$. From the ab-initio-calculated parameters, we find that the magnetic hyperfine coupling is dominated by the interaction of the Tb nuclear spin with electronic orbital angular momentum. The asymmetric $4f$-like electronic charge distribution leads to a strong nuclear quadrupole interaction with significant non-axial terms for the molecule with low symmetry. The ab-initio calculated electronic-nuclear spectrum including the magnetic hyperfine and quadrupole interactions is in excellent agreement with experiment. We further find that the non-axial quadrupole interactions significantly influence the avoided level crossings in magnetization dynamics and that the molecular distortions affect mostly the Fermi contact terms as well as the non-axial quadrupole interactions.
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets. We investigate the hyperfine and nuclear quadrupole interactions for $^{161 }$Dy and $^{163}$Dy nucleus in anionic DyPc$_2$ (Pc=phthalocyanine) single-molecule magnets, using multiconfigurational ab-initio methods (beyond density-functional theory) including spin-orbit interaction. The two isotopes of Dy are chosen because the others have zero nuclear spin. Both isotopes have the nuclear spin $I=5/2$, although the magnitude and sign of the nuclear magnetic moment differ from each other. The large energy gap between the electronic ground and first-excited Kramers doublets, allows us to map the microscopic hyperfine and quadrupole interaction Hamiltonian onto an effective Hamiltonian with an electronic pseudo-spin $S_{rm eff}=1/2$ that corresponds to the ground Kramers doublet. Our ab-initio calculations show that the coupling between the nuclear spin and electronic orbital angular momentum contributes the most to the hyperfine interaction and that both the hyperfine and nuclear quadrupole interactions for $^{161}$Dy and $^{163}$Dy nucleus are much smaller than those for $^{159}$Tb nucleus in TbPc$_2$ single-molecule magnets. The calculated separations of the electronic-nuclear levels are comparable to experimental data reported for $^{163}$DyPc$_2$. We demonstrate that hyperfine interaction for Dy Kramers ion leads to tunnel splitting (or quantum tunneling of magnetization) at zero field. This effect does not occur for TbPc$_2$ single-molecule magnets. The magnetic field values of the avoided level crossings for $^{161}$DyPc$_2$ and $^{163}$DyPc$_2$ are found to be noticeably different, which can be observed from experiment.
The spin dynamics of Tb(OETAP)$_2$ single ion magnets was investigated by means of muon spin resonance ($mu$SR) both in the bulk material as well as when the system is embedded into PEDOT:PSS polymer conductor. The characteristic spin fluctuation tim e is characterized by a high temperature activated trend, with an energy barrier around 320 K, and by a low temperature tunneling regime. When the single ion magnet is embedded into the polymer the energy barrier only slightly decreases and the fluctuation time remains of the same order of magnitude even at low temperature. This finding shows that these single molecule magnets preserve their characteristics which, if combined with those of the conducting polymer, result in a hybrid material of potential interest for organic spintronics.
64 - Song Li , Jyh-Pin Chou , Alice Hu 2020
We study the effect of strain on the physical properties of the nitrogen antisite-vacancy pair in hexagonal boron nitride ($h$-BN), a color center that may be employed as a quantum bit in a two-dimensional material. With group theory and ab-initio an alysis we show that strong electron-phonon coupling plays a key role in the optical activation of this color center. We find a giant shift on the zero-phonon-line (ZPL) emission of the nitrogen antisite-vacancy pair defect upon applying strain that is typical of $h$-BN samples. Our results provide a plausible explanation for the experimental observation of quantum emitters with similar optical properties but widely scattered ZPL wavelengths and the experimentally observed dependence of the ZPL on the strain.
Highly accurate variational calculations, based on a few-parameter, physically adequate trial function, are carried out for the hydrogen molecule hh in inclined configuration, where the molecular axis forms an angle $theta$ with respect to the direct ion of a uniform constant magnetic field ${bf B}$, for $B=0,, 0.1,, 0.175$ and $0.2,$a.u. Three inclinations $theta=0^circ,,45^circ,,90^circ$ are studied in detail with emphasis to the ground state $1_g$. Diamagnetic and paramagnetic susceptibilities are calculated (for $theta=45^circ$ for the first time), they are in agreement with the experimental data and with other calculations. For $B=0,, 0.1$ and $0.2,$a.u. potential energy curves $E$ vs $R$ are built for each inclination, they are interpolated by simple, two-point Pade approximant $Pade[2/6](R)$ with accuracy of not less than 4 significant digits. Spectra of rovibrational states are calculated for the first time. It was found that the optimal configuration of the ground state for $B leq B_{cr}=0.178,$a.u. corresponds always to the parallel configuration, $theta=0$, thus, it is a $^1Sigma_g$ state. The state $1_g$ remains bound for any magnetic field, becoming metastable for $B > B_{cr}$, while for $B_{cr} < B < 12$,a.u. the ground state corresponds to two isolated hydrogen atoms with parallel spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا