ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Federated Learning: Robustness Analytics to Data Heterogeneity

58   0   0.0 ( 0 )
 نشر من قبل Jia Qian
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated Learning allows remote centralized server training models without to access the data stored in distributed (edge) devices. Most work assume the data generated from edge devices is identically and independently sampled from a common population distribution. However, such ideal sampling may not be realistic in many contexts where edge devices correspond to units in variable context. Also, models based on intrinsic agency, such as active sampling schemes, may lead to highly biased sampling. So an imminent question is how robust Federated Learning is to biased sampling? In this work, we investigate two such scenarios. First, we study Federated Learning of a classifier from data with edge device class distribution heterogeneity. Second, we study Federated Learning of a classifier with active sampling at the edge. We present evidence in both scenarios, that federated learning is robust to data heterogeneity.

قيم البحث

اقرأ أيضاً

Data heterogeneity has been identified as one of the key features in federated learning but often overlooked in the lens of robustness to adversarial attacks. This paper focuses on characterizing and understanding its impact on backdooring attacks in federated learning through comprehensive experiments using synthetic and the LEAF benchmarks. The initial impression driven by our experimental results suggests that data heterogeneity is the dominant factor in the effectiveness of attacks and it may be a redemption for defending against backdooring as it makes the attack less efficient, more challenging to design effective attack strategies, and the attack result also becomes less predictable. However, with further investigations, we found data heterogeneity is more of a curse than a redemption as the attack effectiveness can be significantly boosted by simply adjusting the client-side backdooring timing. More importantly,data heterogeneity may result in overfitting at the local training of benign clients, which can be utilized by attackers to disguise themselves and fool skewed-feature based defenses. In addition, effective attack strategies can be made by adjusting attack data distribution. Finally, we discuss the potential directions of defending the curses brought by data heterogeneity. The results and lessons learned from our extensive experiments and analysis offer new insights for designing robust federated learning methods and systems
A recent take towards Federated Analytics (FA), which allows analytical insights of distributed datasets, reuses the Federated Learning (FL) infrastructure to evaluate the summary of model performances across the training devices. However, the curren t realization of FL adopts single server-multiple client architecture with limited scope for FA, which often results in learning models with poor generalization, i.e., an ability to handle new/unseen data, for real-world applications. Moreover, a hierarchical FL structure with distributed computing platforms demonstrates incoherent model performances at different aggregation levels. Therefore, we need to design a robust learning mechanism than the FL that (i) unleashes a viable infrastructure for FA and (ii) trains learning models with better generalization capability. In this work, we adopt the novel democratized learning (Dem-AI) principles and designs to meet these objectives. Firstly, we show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn, as a practical framework to empower generalization capability in support of FA. Secondly, we validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions by leveraging the distributed computing infrastructure. The distributed edge computing servers construct regional models, minimize the communication loads, and ensure distributed data analytic applications scalability. To that end, we adhere to a near-optimal two-sided many-to-one matching approach to handle the combinatorial constraints in Edge-DemLearn and solve it for fast knowledge acquisition with optimization of resource allocation and associations between multiple servers and devices. Extensive simulation results on real datasets demonstrate the effectiveness of the proposed methods.
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data. Although it is recognized that statistical heterogeneity of the client local data yields slower global model convergence, it is less commonly recognized that it also yields a biased federated global model with a high variance of accuracy across clients. In this work, we aim to provide federated learning schemes with improved fairness. To tackle this challenge, we propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks. We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server). Empirical results on a suite of datasets demonstrate the effectiveness of our methods on simultaneously improving the test accuracy and fairness.
Machine learning (ML) tasks are becoming ubiquitous in todays network applications. Federated learning has emerged recently as a technique for training ML models at the network edge by leveraging processing capabilities across the nodes that collect the data. There are several challenges with employing conventional federated learning in contemporary networks, due to the significant heterogeneity in compute and communication capabilities that exist across devices. To address this, we advocate a new learning paradigm called fog learning which will intelligently distribute ML model training across the continuum of nodes from edge devices to cloud servers. Fog learning enhances federated learning along three major dimensions: network, heterogeneity, and proximity. It considers a multi-layer hybrid learning framework consisting of heterogeneous devices with various proximities. It accounts for the topology structures of the local networks among the heterogeneous nodes at each network layer, orchestrating them for collaborative/cooperative learning through device-to-device (D2D) communications. This migrates from star network topologies used for parameter transfers in federated learning to more distributed topologies at scale. We discuss several open research directions to realizing fog learning.
Open banking enables individual customers to own their banking data, which provides fundamental support for the boosting of a new ecosystem of data marketplaces and financial services. In the near future, it is foreseeable to have decentralized data ownership in the finance sector using federated learning. This is a just-in-time technology that can learn intelligent models in a decentralized training manner. The most attractive aspect of federated learning is its ability to decompose model training into a centralized server and distributed nodes without collecting private data. This kind of decomposed learning framework has great potential to protect users privacy and sensitive data. Therefore, federated learning combines naturally with an open banking data marketplaces. This chapter will discuss the possible challenges for applying federated learning in the context of open banking, and the corresponding solutions have been explored as well.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا