ﻻ يوجد ملخص باللغة العربية
Ultracompact minihalos~(UCMHs) can form after the epoch of matter-radiation equality, if the density fluctuations of dark matter have significantly large amplitude on small scales. The constraint on the UCMH abundance allows us to access such small-scale fluctuations. In this paper, we present that, through the measurement of 21-cm fluctuations before the epoch of reionization~ we can obtain a constraint on the UCMH abundance. We calculate the 21-cm signal from UCMHs and show that UCMHs provide the enhancement of the 21-cm fluctuations. We also investigate the constraint on the UCMH abundance and small-scale curvature perturbations. Our results indicate that the upcoming 21-cm observation, the Square Kilometre Array (SKA), provides the constraint on amplitude of primordial curvature power spectrum, ${cal A}_{zeta} lesssim 10^{-6}$ on $100~{rm Mpc}^{-1} lesssim k lesssim 1000~{rm Mpc}^{-1}$. Although it is not stronger than the one from the non-detection of gamma rays induced by dark matter annihilation in UCMHs, the constraint by the SKA will be important because this constraint is independent of the dark matter particle model.
We investigate future constraints on primordial local-type non-Gaussianity from 21 cm angular power spectrum from minihalos. We particularly focus on the trispectrum of primordial curvature perturbations which are characterized by the non-linearity p
The dark matter enclosed in a density perturbation with a large initial amplitude (delta-rho/rho > 1e-3) collapses shortly after recombination and forms an ultracompact minihalo (UCMH). Their high central densities make UCMHs especially suitable for
The possibility that primordial black hole binary mergers of stellar mass can explain the signals detected by the gravitational-wave interferometers has attracted much attention. In this scenario, primordial black holes can comprise only part of the
Hawking radiation from primordial black holes (PBH) can ionize and heat up neutral gas during the cosmic dark ages, leaving imprints on the global 21cm signal of neutral hydrogen. We use the global 21cm signal to constrain the abundance of spinning P
The 21-cm anisotropies from the neutral hydrogen distribution prior to the era of reionization is a sensitive probe of primordial non-Gaussianity. Unlike the case with cosmic microwave background, 21-cm anisotropies provide multi-redshift information