ﻻ يوجد ملخص باللغة العربية
Majority of the modern meta-learning methods for few-shot classification tasks operate in two phases: a meta-training phase where the meta-learner learns a generic representation by solving multiple few-shot tasks sampled from a large dataset and a testing phase, where the meta-learner leverages its learnt internal representation for a specific few-shot task involving classes which were not seen during the meta-training phase. To the best of our knowledge, all such meta-learning methods use a single base dataset for meta-training to sample tasks from and do not adapt the algorithm after meta-training. This strategy may not scale to real-world use-cases where the meta-learner does not potentially have access to the full meta-training dataset from the very beginning and we need to update the meta-learner in an incremental fashion when additional training data becomes available. Through our experimental setup, we develop a notion of incremental learning during the meta-training phase of meta-learning and propose a method which can be used with multiple existing metric-based meta-learning algorithms. Experimental results on benchmark dataset show that our approach performs favorably at test time as compared to training a model with the full meta-training set and incurs negligible amount of catastrophic forgetting
We present a new approach, called meta-meta classification, to learning in small-data settings. In this approach, one uses a large set of learning problems to design an ensemble of learners, where each learner has high bias and low variance and is sk
Recent years have witnessed an abundance of new publications and approaches on meta-learning. This community-wide enthusiasm has sparked great insights but has also created a plethora of seemingly different frameworks, which can be hard to compare an
This paper proposes an incremental solution to Fast Subclass Discriminant Analysis (fastSDA). We present an exact and an approximate linear solution, along with an approximate kernelized variant. Extensive experiments on eight image datasets with dif
Machine learning classifiers are often trained to recognize a set of pre-defined classes. However, in many applications, it is often desirable to have the flexibility of learning additional concepts, with limited data and without re-training on the f
With the memory-resource-limited constraints, class-incremental learning (CIL) usually suffers from the catastrophic forgetting problem when updating the joint classification model on the arrival of newly added classes. To cope with the forgetting pr