ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid grain growth in post-AGB disc systems from far-infrared and sub-millimetre photometry

76   0   0.0 ( 0 )
 نشر من قبل Peter Scicluna
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The timescales on which astronomical dust grows remain poorly understood, with important consequences for our understanding of processes like circumstellar disk evolution and planet formation.A number of post-asymptotic giant branch stars are found to host optically thick, dust- and gas-rich circumstellar discs in Keplerian orbits. These discs exhibit evidence of dust evolution, similar to protoplanetary discs; however since post-AGB discs have substantially shorter lifetimes than protoplanetary discs they may provide new insights on the grain-growth process. We examine a sample of post-AGB stars with discs to determine the FIR and sub-mm spectral index by homogeneously fitting a sample of data from textit{Herschel}, the SMA and the literature. We find that grain growth to at least hundreds of micrometres is ubiquitous in these systems, and that the distribution of spectral indices is more similar to that of protoplanetary discs than debris discs. No correlation is found with the mid-infrared colours of the discs, implying that grain growth occurs independently of the disc structure in post-AGB discs. We infer that grain growth to $sim$mm sizes must occur on timescales $<<10^{5}$ yr, perhaps by orders of magnitude, as the lifetimes of these discs are expected to be $lesssim10^{5}$~yr and all objects have converged to the same state. This growth timescale is short compared to the results of models for protoplanetary discs including fragmentation, and may provide new constraints on the physics of grain growth.

قيم البحث

اقرأ أيضاً

Debris disks, the tenuous rocky and icy remnants of planet formation, are believed to be evidence for planetary systems around other stars. The JCMT/SCUBA-2 debris disk legacy survey SCUBA-2 Observations of Nearby Stars (SONS) observed 100 nearby sta rs, amongst them HD~76582, for evidence of such material. Here we present imaging observations by JCMT/SCUBA-2 and textit{Herschel}/PACS at sub-millimetre and far-infrared wavelengths, respectively. We simultaneously model the ensemble of photometric and imaging data, spanning optical to sub-millimetre wavelengths, in a self-consistent manner. At far-infrared wavelengths, we find extended emission from the circumstellar disk providing a strong constraint on the dust spatial location in the outer system, although the angular resolution is too poor to constrain the interior of the system. In the sub-millimetre, photometry at 450 and 850~$mu$m reveal a steep fall-off that we interpret as a disk dominated by moderately-sized dust grains ($a_{rm min}~=~36~mu$m), perhaps indicative of a non-steady-state collisional cascade within the disk. A disk architecture of three distinct annuli, comprising an unresolved component at $sim$ 20 au and outer components at 80 and 270 au, along with a very steep particle size distribution ($gamma~=~5$), is proposed to match the observations.
New far-infrared and sub-millimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially-integrated fluxes ar e largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500um emission shows evidence for a sub-millimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photo-dissociation regions is found to be (21+/-4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.
We study the relationship between the mid-infrared and sub-mm variability of deeply embedded protostars using the multi-epoch data from the Wide Infrared Survey Explorer ($WISE$/NEOWISE) and the ongoing James Clerk Maxwell Telescope (JCMT) transient survey. Our search for signs of stochastic (random) and/or secular (roughly monotonic in time) variability in a sample of 59 young stellar objects (YSOs) revealed that 35 are variable in at least one of the two surveys. This variability is dominated by secular changes. Of those objects with secular variability, 14 objects ($22%$ of the sample) show correlated secular variability over mid-IR and sub-mm wavelengths. Variable accretion is the likely mechanism responsible for this type of variability. Fluxes of YSOs that vary in both wavelengths follow a relation of $log_{10} F_{4.6}(t)=eta log_{10} F_{850}(t)$ between the mid-IR and sub-mm, with $eta=5.53pm0.29$. This relationship arises from the fact that sub-mm fluxes respond to the dust temperature in the larger envelope whereas the mid-IR emissivity is more directly proportional to the accretion luminosity. The exact scaling relation, however, depends on the structure of the envelope, the importance of viscous heating in the disc, and dust opacity laws.
The majority of the ultimate main-sequence mass of a star is assembled in the protostellar phase, where a forming star is embedded in an infalling envelope and encircled by a protoplanetary disk. Studying mass accretion in protostars is thus a key to understanding how stars gain their mass and ultimately how their disks and planets form and evolve. At this early stage, the dense envelope reprocesses most of the luminosity generated by accretion to far-infrared and submillimeter wavelengths. Time-domain photometry at these wavelengths is needed to probe the physics of accretion onto protostars, but variability studies have so far been limited, in large part because of the difficulty in accessing these wavelengths from the ground. We discuss the scientific progress that would be enabled with far-infrared and submillimeter programs to probe protostellar variability in the nearest kiloparsec.
Binary post-asymptotic giant branch (post-AGB) stars have orbital periods in the range of 100--2500 days in eccentric orbits. They are surrounded by circumbinary dusty discs. They are the immediate result of unconstrained binary interaction processes . Their observed orbital properties do not correspond to model predictions: Neither the periods nor the high eccentricities are expected. Our goal is to investigate if interactions between a binary and its circumbinary disc during the post-AGB phase can result in their eccentric orbits, while simultaneously explaining the chemical anomaly known as depletion. For this paper, we selected three binaries (EP Lyr, RU Cen, HD 46703) with well-constrained orbits, luminosities, and chemical abundances. We used the MESA code to evolve post-AGB models, while including the accretion of metal-poor gas. This allows us to constrain the evolution of the stars and study the impact of circumbinary discs on the orbital properties of the models. We investigate the effect of torques produced by gas inside the binary cavity and the effect of Lindblad resonances on the orbit, while also including the tidal interaction following the equilibrium tide model. We find that none of our models are able to explain the high orbital eccentricities of the binaries in our sample. The accretion torque does not significantly impact the binary orbit, while Lindblad resonances can pump the eccentricity up to only $e approx 0.2$. At higher eccentricities, the tidal interaction becomes too strong, so the high observed eccentricities cannot be reproduced. However, even if we assume tides to be ineffective, the eccentricities in our models do not exceed $approx 0.25$. We conclude that either our knowledge of disc-binary interactions is still incomplete, or the binaries must have left their phase of strong interaction in an eccentric orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا