ﻻ يوجد ملخص باللغة العربية
The majority of the ultimate main-sequence mass of a star is assembled in the protostellar phase, where a forming star is embedded in an infalling envelope and encircled by a protoplanetary disk. Studying mass accretion in protostars is thus a key to understanding how stars gain their mass and ultimately how their disks and planets form and evolve. At this early stage, the dense envelope reprocesses most of the luminosity generated by accretion to far-infrared and submillimeter wavelengths. Time-domain photometry at these wavelengths is needed to probe the physics of accretion onto protostars, but variability studies have so far been limited, in large part because of the difficulty in accessing these wavelengths from the ground. We discuss the scientific progress that would be enabled with far-infrared and submillimeter programs to probe protostellar variability in the nearest kiloparsec.
OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtain
Methyl mercaptan (CH$_3$SH) is an important sulfur-bearing species in the interstellar medium, terrestrial environment, and potentially in planetary atmospheres. The aim of the present study is to provide accurate spectroscopic parameters for the mos
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach-Zehnder interferometer design has been widely adopted for current and future imaging FTS instruments; we comp
The timescales on which astronomical dust grows remain poorly understood, with important consequences for our understanding of processes like circumstellar disk evolution and planet formation.A number of post-asymptotic giant branch stars are found t
We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 square degrees of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14pm0.04deg^{-2}. The selected sources have 500um flux densities (