ﻻ يوجد ملخص باللغة العربية
The `equation-free toolbox empowers the computer-assisted analysis of complex, multiscale systems. Its aim is to enable you to immediately use microscopic simulators to perform macro-scale system level tasks and analysis, because micro-scale simulations are often the best available description of a system. The methodology bypasses the derivation of macroscopic evolution equations by computing the micro-scale simulator only over short bursts in time on small patches in space, with bursts and patches well-separated in time and space respectively. We introduce the suite of coded equation-free functions in an accessible way, link to more detailed descriptions, discuss their mathematical support, and introduce a novel and efficient algorithm for Projective Integration. Some facets of toolbox development of equation-free functions are then detailed. Download the toolbox functions (https://github.com/uoa1184615/EquationFreeGit) and use to empower efficient and accurate simulation in a wide range of your science and engineering problems.
The Equation-Free approach to efficient multiscale numerical computation marries trusted micro-scale simulations to a framework for numerical macro-scale reduction -- the patch dynamics scheme. A recent novel patch scheme empowered the Equation-Free
The cost- and memory-efficient numerical simulation of coupled volume-based multi-physics problems like flow, transport, wave propagation and others remains a challenging task with finite element method (FEM) approaches. Goal-oriented space and time
SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. In the last years we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems
The alternating direction method of multipliers (ADMM) is a popular approach for solving optimization problems that are potentially non-smooth and with hard constraints. It has been applied to various computer graphics applications, including physica
We present cudaclaw, a CUDA-based high performance data-parallel framework for the solution of multidimensional hyperbolic partial differential equation (PDE) systems, equations describing wave motion. cudaclaw allows computational scientists to solv