ترغب بنشر مسار تعليمي؟ اضغط هنا

NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc

224   0   0.0 ( 0 )
 نشر من قبل Jose E. Roman
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. In the last years we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The paper discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers.



قيم البحث

اقرأ أيضاً

In this paper, a parallel structured divide-and-conquer (PSDC) eigensolver is proposed for symmetric tridiagonal matrices based on ScaLAPACK and a parallel structured matrix multiplication algorithm, called PSMMA. Computing the eigenvectors via matri x-matrix multiplications is the most computationally expensive part of the divide-and-conquer algorithm, and one of the matrices involved in such multiplications is a rank-structured Cauchy-like matrix. By exploiting this particular property, PSMMA constructs the local matrices by using generators of Cauchy-like matrices without any communication, and further reduces the computation costs by using a structured low-rank approximation algorithm. Thus, both the communication and computation costs are reduced. Experimental results show that both PSMMA and PSDC are highly scalable and scale to 4096 processes at least. PSDC has better scalability than PHDC that was proposed in [J. Comput. Appl. Math. 344 (2018) 512--520] and only scaled to 300 processes for the same matrices. Comparing with texttt{PDSTEDC} in ScaLAPACK, PSDC is always faster and achieves $1.4$x--$1.6$x speedup for some matrices with few deflations. PSDC is also comparable with ELPA, with PSDC being faster than ELPA when using few processes and a little slower when using many processes.
We present cudaclaw, a CUDA-based high performance data-parallel framework for the solution of multidimensional hyperbolic partial differential equation (PDE) systems, equations describing wave motion. cudaclaw allows computational scientists to solv e such systems on GPUs without being burdened by the need to write CUDA code, worry about thread and block details, data layout, and data movement between the different levels of the memory hierarchy. The user defines the set of PDEs to be solved via a CUDA- independent serial Riemann solver and the framework takes care of orchestrating the computations and data transfers to maximize arithmetic throughput. cudaclaw treats the different spatial dimensions separately to allow suitable block sizes and dimensions to be used in the different directions, and includes a number of optimizations to minimize access to global memory.
Polynomial eigenvalue problems (PEPs) arise in a variety of science and engineering applications, and many breakthroughs in the development of classical algorithms to solve PEPs have been made in the past decades. Here we attempt to solve PEPs in a q uantum computer. Firstly, for generalized eigenvalue problems (GEPs) $Ax = lambda Bx$ with $A,B$ symmetric, and $B$ positive definite, we give a quantum algorithm based on block-encoding and quantum phase estimation. In a more general case when $B$ is invertible, $B^{-1}A$ is diagonalizable and all the eigenvalues are real, we propose a quantum algorithm based on the Fourier spectral method to solve ordinary differential equations (ODEs). The inputs of our algorithms can be any desired states, and the outputs are superpositions of the eigenpairs. The complexities are polylog in the matrix size and linear in the precision. The dependence on precision is optimal. Secondly, we show that when $B$ is singular, any quantum algorithm uses at least $Omega(sqrt{n})$ queries to compute the eigenvalues, where $n$ is the matrix size. Thirdly, based on the linearization method and the connection between PEPs and higher-order ODEs, we provide two quantum algorithms to solve PEPs by extending the quantum algorithm for GEPs. We also give detailed complexity analysis of the algorithm for two special types of quadratic eigenvalue problems that are important in practice. Finally, under an extra assumption, we propose a quantum algorithm to solve PEPs when the eigenvalues are complex.
In this work we formally derive and prove the correctness of the algorithms and data structures in a parallel, distributed-memory, generic finite element framework that supports h-adaptivity on computational domains represented as forest-of-trees. Th e framework is grounded on a rich representation of the adaptive mesh suitable for generic finite elements that is built on top of a low-level, light-weight forest-of-trees data structure handled by a specialized, highly parallel adaptive meshing engine, for which we have identified the requirements it must fulfill to be coupled into our framework. Atop this two-layered mesh representation, we build the rest of data structures required for the numerical integration and assembly of the discrete system of linear equations. We consider algorithms that are suitable for both subassembled and fully-assembled distributed data layouts of linear system matrices. The proposed framework has been implemented within the FEMPAR scientific software library, using p4est as a practical forest-of-octrees demonstrator. A strong scaling study of this implementation when applied to Poisson and Maxwell problems reveals remarkable scalability up to 32.2K CPU cores and 482.2M degrees of freedom. Besides, a comparative performance study of FEMPAR and the state-of-the-art deal.ii finite element software shows at least comparative performance, and at most factor 2-3 improvements in the h-adaptive approximation of a Poisson problem with first- and second-order Lagrangian finite elements, respectively.
The `equation-free toolbox empowers the computer-assisted analysis of complex, multiscale systems. Its aim is to enable you to immediately use microscopic simulators to perform macro-scale system level tasks and analysis, because micro-scale simulati ons are often the best available description of a system. The methodology bypasses the derivation of macroscopic evolution equations by computing the micro-scale simulator only over short bursts in time on small patches in space, with bursts and patches well-separated in time and space respectively. We introduce the suite of coded equation-free functions in an accessible way, link to more detailed descriptions, discuss their mathematical support, and introduce a novel and efficient algorithm for Projective Integration. Some facets of toolbox development of equation-free functions are then detailed. Download the toolbox functions (https://github.com/uoa1184615/EquationFreeGit) and use to empower efficient and accurate simulation in a wide range of your science and engineering problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا