ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Brownian particles: mapping to equilibrium polymers and exact computation of moments

180   0   0.0 ( 0 )
 نشر من قبل Debasish Chaudhuri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that path probabilities of Brownian motion correspond to the equilibrium configurational probabilities of flexible Gaussian polymers, while those of active Brownian motion correspond to in-extensible semiflexible polymers. Here we investigate the properties of the equilibrium polymer that corresponds to the trajectories of particles acted on simultaneously by both Brownian as well as active noise. Through this mapping we can see interesting crossovers in mechanical properties of the polymer with changing contour length. The polymer end-to-end distribution exhibits Gaussian behaviour for short lengths, which changes to the form of semiflexible filaments at intermediate lengths, to finally go back to a Gaussian form for long contour lengths. By performing a Laplace transform of the governing Fokker-Planck equation of the active Brownian particle, we discuss a direct method to derive exact expressions for all the moments of the relevant dynamical variables, in arbitrary dimensions. These are verified via numerical simulations and used to describe interesting qualitative features such as, for example, dynamical crossovers. Finally we discuss the kurtosis of the ABPs position which we compute exactly and show that it can be used to differentiate between active Brownian particles and active Ornstein-Uhlenbeck process.



قيم البحث

اقرأ أيضاً

We consider an active Brownian particle in a $d$-dimensional harmonic trap, in the presence of translational diffusion. While the Fokker-Planck equation can not in general be solved to obtain a closed form solution of the joint distribution of positi ons and orientations, as we show, it can be utilized to evaluate the exact time dependence of all moments, using a Laplace transform approach. We present explicit calculation of several such moments at arbitrary times and their evolution to the steady state. In particular we compute the kurtosis of the displacement, a quantity which clearly shows the difference of the active steady state properties from the equilibrium Gaussian form. We find that it increases with activity to asymptotic saturation, but varies non-monotonically with the trap-stiffness, thereby capturing a recently observed active- to- passive re-entrant behavior.
We study the linear response of interacting active Brownian particles in an external potential to simple shear flow. Using a path integral approach, we derive the linear response of any state observable to initiating shear in terms of correlation fun ctions evaluated in the unperturbed system. For systems and observables which are symmetric under exchange of the $x$ and $y$ coordinates, the response formula can be drastically simplified to a form containing only state variables in the corresponding correlation functions (compared to the generic formula containing also time derivatives). In general, the shear couples to the particles by translational as well as rotational advection, but in the aforementioned case of $xy$ symmetry only translational advection is relevant in the linear regime. We apply the response formulas analytically in solvable cases and numerically in a specific setup. In particular, we investigate the effect of a shear flow on the morphology and the stress of $N$ confined active particles in interaction, where we find that the activity as well as additional alignment interactions generally increase the response.
We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein-Uhlenbeck process for active speed generation. Using a Laplace transfo rm approach, we describe and use a Fokker-Planck equation-based method to evaluate the exact time dependence of all relevant dynamical moments. We present explicit calculations of such moments and compare our analytical predictions against numerical simulations to demonstrate and analyze several dynamical crossovers. The kurtosis of displacement shows positive or negative deviations from a Gaussian behavior at intermediate times depending on the dominance of speed or orientational fluctuations.
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph ysics of these two model systems both at microscopic and macroscopic scales. Using exact results for their steady-state distribution in the presence of external potentials, we show that they both admit the same effective equilibrium regime perturbatively that breaks down for stronger external potentials, in a model-dependent way. In the presence of collisional repulsions such particles slow down at high density: their propulsive effort is unchanged, but their average speed along ${bf u}$ becomes $v(rho) < v$. A fruitful avenue is then to construct a mean-field description in which particles are ghost-like and have no collisions, but swim at a variable speed $v$ that is an explicit function or functional of the density $rho$. We give numerical evidence that the recently shown equivalence of the fluctuating hydrodynamics of ABPs and RTPs in this case, which we detail here, extends to microscopic models of ABPs and RTPs interacting with repulsive forces.
The equilibrium properties of a system of passive diffusing particles in an external magnetic field are unaffected by the Lorentz force. In contrast, active Brownian particles exhibit steady-state phenomena that depend on both the strength and the po larity of the applied magnetic field. The intriguing effects of the Lorentz force, however, can only be observed when out-of-equilibrium density gradients are maintained in the system. To this end, we use the method of stochastic resetting on active Brownian particles in two dimensions by resetting them to the line $x=0$ at a constant rate and periodicity in the $y$ direction. Under stochastic resetting, an active system settles into a nontrivial stationary state which is characterized by an inhomogeneous density distribution, polarization and bulk fluxes perpendicular to the density gradients. We show that whereas for a uniform magnetic field the properties of the stationary state of the active system can be obtained from its passive counterpart, novel features emerge in the case of an inhomogeneous magnetic field which have no counterpart in passive systems. In particular, there exists an activity-dependent threshold rate such that for smaller resetting rates, the density distribution of active particles becomes non-monotonic. We also study the mean first-passage time to the $x$ axis and find a surprising result: it takes an active particle more time to reach the target from any given point for the case when the magnetic field increases away from the axis. The theoretical predictions are validated using Brownian dynamics simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا