ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic resetting of active Brownian particles with Lorentz force

103   0   0.0 ( 0 )
 نشر من قبل Iman Abdoli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equilibrium properties of a system of passive diffusing particles in an external magnetic field are unaffected by the Lorentz force. In contrast, active Brownian particles exhibit steady-state phenomena that depend on both the strength and the polarity of the applied magnetic field. The intriguing effects of the Lorentz force, however, can only be observed when out-of-equilibrium density gradients are maintained in the system. To this end, we use the method of stochastic resetting on active Brownian particles in two dimensions by resetting them to the line $x=0$ at a constant rate and periodicity in the $y$ direction. Under stochastic resetting, an active system settles into a nontrivial stationary state which is characterized by an inhomogeneous density distribution, polarization and bulk fluxes perpendicular to the density gradients. We show that whereas for a uniform magnetic field the properties of the stationary state of the active system can be obtained from its passive counterpart, novel features emerge in the case of an inhomogeneous magnetic field which have no counterpart in passive systems. In particular, there exists an activity-dependent threshold rate such that for smaller resetting rates, the density distribution of active particles becomes non-monotonic. We also study the mean first-passage time to the $x$ axis and find a surprising result: it takes an active particle more time to reach the target from any given point for the case when the magnetic field increases away from the axis. The theoretical predictions are validated using Brownian dynamics simulations.



قيم البحث

اقرأ أيضاً

The Fokker-Planck equation provides complete statistical description of a particle undergoing random motion in a solvent. In the presence of Lorentz force due to an external magnetic field, the Fokker-Planck equation picks up a tensorial coefficient, which reflects the anisotropy of the particles motion. This tensor, however, can not be interpreted as a diffusion tensor; there are antisymmetric terms which give rise to fluxes perpendicular to the density gradients. Here, we show that for an inhomogeneous magnetic field these nondiffusive fluxes have finite divergence and therefore affect the density evolution of the system. Only in the special cases of a uniform magnetic field or carefully chosen initial condition with the same symmetry as the magnetic field can these fluxes be ignored in the density evolution.
We study the motion of a Brownian particle subjected to Lorentz force due to an external magnetic field. Each spatial degree of freedom of the particle is coupled to a different thermostat. We show that the magnetic field results in correlation betwe en different velocity components in the stationary state. Integrating the velocity autocorrelation matrix, we obtain the diffusion matrix that enters the Fokker-Planck equation for the probability density. The eigenvectors of the diffusion matrix do not align with the temperature axes. As a consequence the Brownian particle performs spatially correlated diffusion. We further show that in the presence of an isotropic confining potential, an unusual, flux-free steady state emerges which is characterized by a non-Boltzmann density distribution, which can be rotated by reversing the magnetic field. The nontrivial steady state properties of our system result from the Lorentz force induced coupling of the spatial degrees of freedom which cease to exist in equilibrium corresponding to a single-temperature system.
In systems with overdamped dynamics, the Lorentz force reduces the diffusivity of a Brownian particle in the plane perpendicular to the magnetic field. The anisotropy in diffusion implies that the Fokker-Planck equation for the probabiliy distributio n of the particle acquires a tensorial coefficient. The tensor, however, is not a typical diffusion tensor due to the antisymmetric elements which account for the fact that Lorentz force curves the trajectory of a moving charged particle. This gives rise to unusual dynamics with features such as additional Lorentz fluxes and a nontrivial density distribution, unlike a diffusive system. The equilibrium properties are, however, unaffected by the Lorentz force. Here we show that by stochastically resetting the Brownian particle, a nonequilibrium steady state can be created which preserves the hallmark features of dynamics under Lorentz force. We then consider a minimalistic example of spatially inhomogeneous magnetic field, which shows how Lorentz fluxes fundamentally alter the boundary conditions giving rise to an unusual stationary state.
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph ysics of these two model systems both at microscopic and macroscopic scales. Using exact results for their steady-state distribution in the presence of external potentials, we show that they both admit the same effective equilibrium regime perturbatively that breaks down for stronger external potentials, in a model-dependent way. In the presence of collisional repulsions such particles slow down at high density: their propulsive effort is unchanged, but their average speed along ${bf u}$ becomes $v(rho) < v$. A fruitful avenue is then to construct a mean-field description in which particles are ghost-like and have no collisions, but swim at a variable speed $v$ that is an explicit function or functional of the density $rho$. We give numerical evidence that the recently shown equivalence of the fluctuating hydrodynamics of ABPs and RTPs in this case, which we detail here, extends to microscopic models of ABPs and RTPs interacting with repulsive forces.
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (Single File conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong inter-particle correlations developed in collective rearrangements. We consider a minimal model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) Single File picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in Single File may arrange into clusters which are continuously merging and splitting ({it active clusters}) or merely reproduce passive-motion paradigms, respectively. We show that activity convey to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا