ﻻ يوجد ملخص باللغة العربية
We critically examine the internal consistency of a set of minimal assumptions entering the theory of fault-tolerant quantum error correction for Markovian noise. These assumptions are: fast gates, a constant supply of fresh and cold ancillas, and a Markovian bath. We point out that these assumptions may not be mutually consistent in light of rigorous formulations of the Markovian approximation. Namely, Markovian dynamics requires either the singular coupling limit (high temperature), or the weak coupling limit (weak system-bath interaction). The former is incompatible with the assumption of a constant and fresh supply of cold ancillas, while the latter is inconsistent with fast gates. We discuss ways to resolve these inconsistencies. As part of our discussion we derive, in the weak coupling limit, a new master equation for a system subject to periodic driving.
Correcting errors in real time is essential for reliable large-scale quantum computations. Realizing this high-level function requires a system capable of several low-level primitives, including single-qubit and two-qubit operations, mid-circuit meas
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system. These extra degrees of freedom enable the detection and correction of errors, but also increase the operational complexity of the encoded logic
Extensive quantum error correction is necessary in order to perform a useful computation on a noisy quantum computer. Moreover, quantum error correction must be implemented based on imperfect parity check measurements that may return incorrect outcom
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However,it is still challenging to experimentally generate the GKP qubit w
Bosonic quantum error correction is a viable option for realizing error-corrected quantum information processing in continuous-variable bosonic systems. Various single-mode bosonic quantum error-correcting codes such as cat, binomial, and GKP codes h