ﻻ يوجد ملخص باللغة العربية
Neuromorphic computing promises revolutionary improvements over conventional systems for applications that process unstructured information. To fully realize this potential, neuromorphic systems should exploit the biomimetic behavior of emerging nanodevices. In particular, exceptional opportunities are provided by the non-volatility and analog capabilities of spintronic devices. While spintronic devices have previously been proposed that emulate neurons and synapses, complementary metal-oxide-semiconductor (CMOS) devices are required to implement multilayer spintronic perceptron crossbars. This work therefore proposes a new spintronic neuron that enables purely spintronic multilayer perceptrons, eliminating the need for CMOS circuitry and simplifying fabrication.
Controlled atomic scale fabrication of functional devices is one of the holy grails of nanotechnology. The most promising class of techniques that enable deterministic nanodevice fabrication are based on scanning probe patterning or surface assembly.
Neuromorphic computing systems overcome the limitations of traditional von Neumann computing architectures. These computing systems can be further improved upon by using emerging technologies that are more efficient than CMOS for neural computation.
Complementary metal oxide semiconductor (CMOS) devices display volatile characteristics, and are not well suited for analog applications such as neuromorphic computing. Spintronic devices, on the other hand, exhibit both non-volatile and analog featu
We demonsrtate electrical spin injection and detection in $n$-type Ge ($n$-Ge) at room temperature using four-terminal nonlocal spin-valve and Hanle-effect measurements in lateral spin-valve (LSV) devices with Heusler-alloy Schottky tunnel contacts.
We propose a heterostructure device comprised of magnets and piezoelectrics that significantly improves the delay and the energy dissipation of an all-spin logic (ASL) device. This paper studies and models the physics of the device, illustrates its o