ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Speed CMOS-Free Purely Spintronic Asynchronous Recurrent Neural Network

70   0   0.0 ( 0 )
 نشر من قبل Xuan Hu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Neuromorphic computing systems overcome the limitations of traditional von Neumann computing architectures. These computing systems can be further improved upon by using emerging technologies that are more efficient than CMOS for neural computation. Recent research has demonstrated memristors and spintronic devices in various neural network designs boost efficiency and speed. This paper presents a biologically inspired fully spintronic neuron used in a fully spintronic Hopfield RNN. The network is used to solve tasks, and the results are compared against those of current Hopfield neuromorphic architectures which use emerging technologies.



قيم البحث

اقرأ أيضاً

153 - Yuan Gao 2016
This paper introduces two recurrent neural network structures called Simple Gated Unit (SGU) and Deep Simple Gated Unit (DSGU), which are general structures for learning long term dependencies. Compared to traditional Long Short-Term Memory (LSTM) an d Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM, which require more than one gates to control information flow in the network, SGU and DSGU only use one multiplicative gate to control the flow of information. We show that this difference can accelerate the learning speed in tasks that require long dependency information. We also show that DSGU is more numerically stable than SGU. In addition, we also propose a standard way of representing inner structure of RNN called RNN Conventional Graph (RCG), which helps analyzing the relationship between input units and hidden units of RNN.
This paper presents an implementation of multilayer feed forward neural networks (NN) to optimize CMOS analog circuits. For modeling and design recently neural network computational modules have got acceptance as an unorthodox and useful tool. To ach ieve high performance of active or passive circuit component neural network can be trained accordingly. A well trained neural network can produce more accurate outcome depending on its learning capability. Neural network model can replace empirical modeling solutions limited by range and accuracy.[2] Neural network models are easy to obtain for new circuits or devices which can replace analytical methods. Numerical modeling methods can also be replaced by neural network model due to their computationally expansive behavior.[2][10][20]. The pro- posed implementation is aimed at reducing resource requirement, without much compromise on the speed. The NN ensures proper functioning by assigning the appropriate inputs, weights, biases, and excitation function of the layer that is currently being computed. The concept used is shown to be very effective in reducing resource requirements and enhancing speed.
Photonic Neural Network implementations have been gaining considerable attention as a potentially disruptive future technology. Demonstrating learning in large scale neural networks is essential to establish photonic machine learning substrates as vi able information processing systems. Realizing photonic Neural Networks with numerous nonlinear nodes in a fully parallel and efficient learning hardware was lacking so far. We demonstrate a network of up to 2500 diffractively coupled photonic nodes, forming a large scale Recurrent Neural Network. Using a Digital Micro Mirror Device, we realize reinforcement learning. Our scheme is fully parallel, and the passive weights maximize energy efficiency and bandwidth. The computational output efficiently converges and we achieve very good performance.
69 - Na Zhang , Xuefeng Guan , Jun Cao 2019
Traffic forecasting is crucial for urban traffic management and guidance. However, existing methods rarely exploit the time-frequency properties of traffic speed observations, and often neglect the propagation of traffic flows from upstream to downst ream road segments. In this paper, we propose a hybrid approach that learns the spatio-temporal dependency in traffic flows and predicts short-term traffic speeds on a road network. Specifically, we employ wavelet transform to decompose raw traffic data into several components with different frequency sub-bands. A Motif-based Graph Convolutional Recurrent Neural Network (Motif-GCRNN) and Auto-Regressive Moving Average (ARMA) are used to train and predict low-frequency components and high-frequency components, respectively. In the Motif-GCRNN framework, we integrate Graph Convolutional Networks (GCNs) with local sub-graph structures - Motifs - to capture the spatial correlations among road segments, and apply Long Short-Term Memory (LSTM) to extract the short-term and periodic patterns in traffic speeds. Experiments on a traffic dataset collected in Chengdu, China, demonstrate that the proposed hybrid method outperforms six state-of-art prediction methods.
129 - Oliver Obst 2009
In long-term deployments of sensor networks, monitoring the quality of gathered data is a critical issue. Over the time of deployment, sensors are exposed to harsh conditions, causing some of them to fail or to deliver less accurate data. If such a d egradation remains undetected, the usefulness of a sensor network can be greatly reduced. We present an approach that learns spatio-temporal correlations between different sensors, and makes use of the learned model to detect misbehaving sensors by using distributed computation and only local communication between nodes. We introduce SODESN, a distributed recurrent neural network architecture, and a learning method to train SODESN for fault detection in a distributed scenario. Our approach is evaluated using data from different types of sensors and is able to work well even with less-than-perfect link qualities and more than 50% of failed nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا