ﻻ يوجد ملخص باللغة العربية
Schwarzschild black holes in a de Sitter background were studied in terms of their thermodynamics based on the Renyi statistics. This led to thermodynamically stable black hole configurations for some certain range of black hole radii; namely within this range the corresponding black holes have positive heat capacity. Moreover, for a certain background temperature there can exist at most three configurations of black hole; one among which is thermodynamically stable. These configurations were investigated in terms of their free energies, resulting in the moderate-sized stable black hole configuration being the most preferred configuration. Furthermore, a specific condition on the Renyi non-extensive parameter is required if a given hot spacetime were to evolve thermally into the moderate-sized stable black hole.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compu
The Reissner-Nordstrom-de Sitter (RN-dS) spacetime can be considered as a thermodynamic system. Its thermodynamic properties are discussed that the RN-dS spacetime has phase transitions and critical phenomena similar to that of the Van de Waals syste
Two important problems in studying the quantum black hole, namely the construction of the Hilbert space and the definition of the time evolution operator on such Hilbert space, are discussed using the de Sitter background field method for an observer
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase
We first study the thermodynamics of Bardeen-AdS black hole by the $T$-$r_{h}$ diagram, where T is the Hawking temperature and $r_{h}$ is the radius of event horizon. The cut-off radius which is the minimal radius of the thermodynamical stable Bardee