ﻻ يوجد ملخص باللغة العربية
Almost strong edge-mode operators arising at the boundaries of certain interacting 1D symmetry protected topological phases with (Z_2) symmetry have infinite temperature lifetimes that are non-perturbatively long in the integrability breaking terms, making them promising as bits for quantum information processing. We extract the lifetime of these edge-mode operators for small system sizes as well as in the thermodynamic limit. For the latter, a Lanczos scheme is employed to map the operator dynamics to a one dimensional tight-binding model of a single particle in Krylov space. We find this model to be that of a spatially inhomogeneous Su-Schrieffer-Heeger model with a hopping amplitude that increases away from the boundary, and a dimerization that decreases away from the boundary. We associate this dimerized or staggered structure with the existence of the almost strong mode. Thus the short time dynamics of the almost strong mode is that of the edge-mode of the Su-Schrieffer-Heeger model, while the long time dynamics involves decay due to tunneling out of that mode, followed by chaotic operator spreading. We also show that competing scattering processes can lead to interference effects that can significantly enhance the lifetime.
Recently, it has been found that there exist symmetry-protected topological phases of fermions, which have no realizations in non-interacting fermionic systems or bosonic models. We study the edge states of such an intrinsically interacting fermionic
We review the dimensional reduction procedure in the group cohomology classification of bosonic SPT phases with finite abelian unitary symmetry group. We then extend this to include general reductions of arbitrary dimensions and also extend the proce
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation.
A continuum of excitations in interacting one-dimensional systems is bounded from below by a spectral edge that marks the lowest possible excitation energy for a given momentum. We analyse short-range interactions between Fermi particles and between
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermio