ﻻ يوجد ملخص باللغة العربية
Millions of news articles are published online every day, which can be overwhelming for readers to follow. Grouping articles that are reporting the same event into news stories is a common way of assisting readers in their news consumption. However, it remains a challenging research problem to efficiently and effectively generate a representative headline for each story. Automatic summarization of a document set has been studied for decades, while few studies have focused on generating representative headlines for a set of articles. Unlike summaries, which aim to capture most information with least redundancy, headlines aim to capture information jointly shared by the story articles in short length, and exclude information that is too specific to each individual article. In this work, we study the problem of generating representative headlines for news stories. We develop a distant supervision approach to train large-scale generation models without any human annotation. This approach centers on two technical components. First, we propose a multi-level pre-training framework that incorporates massive unlabeled corpus with different quality-vs.-quantity balance at different levels. We show that models trained within this framework outperform those trained with pure human curated corpus. Second, we propose a novel self-voting-based article attention layer to extract salient information shared by multiple articles. We show that models that incorporate this layer are robust to potential noises in news stories and outperform existing baselines with or without noises. We can further enhance our model by incorporating human labels, and we show our distant supervision approach significantly reduces the demand on labeled data.
This paper describes the SemEval-2020 shared task Assessing Humor in Edited News Headlines. The tasks dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using cr
Emotion stimulus extraction is a fine-grained subtask of emotion analysis that focuses on identifying the description of the cause behind an emotion expression from a text passage (e.g., in the sentence I am happy that I passed my exam the phrase pas
Measuring the congruence between two texts has several useful applications, such as detecting the prevalent deceptive and misleading news headlines on the web. Many works have proposed machine learning based solutions such as text similarity between
We propose a method for online news stream clustering that is a variant of the non-parametric streaming K-means algorithm. Our model uses a combination of sparse and dense document representations, aggregates document-cluster similarity along these m
In this paper we propose a deep learning method for performing attributed-based music-to-image translation. The proposed method is applied for synthesizing visual stories according to the sentiment expressed by songs. The generated images aim to indu