ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Frattini subgroup of a finite group

160   0   0.0 ( 0 )
 نشر من قبل Stefanos Aivazidis
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the class of finite groups $G$ satisfying $Phi (G/N)= Phi(G)N/N$ for all normal subgroups $N$ of $G$. As a consequence of our main results we extend and amplify a theorem of Doerk concerning this class from the soluble universe to all finite groups and answer in the affirmative a long-standing question of Christensen whether the class of finite groups which possess complements for each of their normal subgroups is subnormally closed.



قيم البحث

اقرأ أيضاً

248 - Gili Golan , Mark Sapir 2015
Recently Vaughan Jones showed that the R. Thompson group $F$ encodes in a natural way all knots, and a certain subgroup $vec F$ of $F$ encodes all oriented knots. We answer several questions of Jones about $vec F$. In particular we prove that the sub group $vec F$ is generated by $x_0x_1, x_1x_2, x_2x_3$ (where $x_i, i=0,1,2,...$ are the standard generators of $F$) and is isomorphic to $F_3$, the analog of $F$ where all slopes are powers of $3$ and break points are $3$-adic rationals. We also show that $vec F$ coincides with its commensurator. Hence the linearization of the permutational representation of $F$ on $F/vec F$ is irreducible.
Let ${frak F}$ be a class of group and $G$ a finite group. Then a set $Sigma $ of subgroups of $G$ is called a emph{$G$-covering subgroup system} for the class ${frak F}$ if $Gin {frak F}$ whenever $Sigma subseteq {frak F}$. We prove that: {sl If a set of subgroups $Sigma$ of $G$ contains at least one supplement to each maximal subgroup of every Sylow subgroup of $G$, then $Sigma$ is a $G$-covering subgroup system for the classes of all $sigma$-soluble and all $sigma$-nilpotent groups, and for the class of all $sigma$-soluble $Psigma T$-groups.} This result gives positive answers to questions 19.87 and 19.88 from the Kourovka notebook.
We investigate the subgroup structure of the hyperoctahedral group in six dimensions. In particular, we study the subgroups isomorphic to the icosahedral group. We classify the orthogonal crystallographic representations of the icosahedral group and analyse their intersections and subgroups, using results from graph theory and their spectra.
Answering a question of Dan Haran and generalizing some results of Aschbacher-Guralnick and Suzuki, we prove that given a set of primes pi, any finite group can be generated by a pi-subgroup and a pi-subgroup. This gives a free product description of a countably generated free profinite group.
428 - Bettina Eick 2021
This contains a new version of the so-called non-commutative Gauss algorithm for polycyclic groups. Its results allow to read off the order and the index of a subgroup in an (possibly infinite) polycyclic group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا